641 research outputs found

    Rehabilitation of shoulder impingement syndrome and rotator cuff injuries: an evidence-based review

    Get PDF
    Rehabilitation of the patient with glenohumeral impingement requires a complete understanding of the structures involved and the underlying mechanism creating the impingement response. A detailed clinical examination and comprehensive treatment programme including specific interventions to address pain, scapular dysfunction and rotator cuff weakness are recommended. The inclusion of objective testing to quantify range of motion and both muscular strength and balance in addition to the manual orthopaedic clinical tests allows clinicians to design evidence-based rehabilitation programmes as well as measure progression and patient improvement

    Characterization of Rift Valley fever virus nucleocapsid protein-RNA binding interactions and development of a high-throughput screening assay for identification of n-RNA binding inhibitors

    Get PDF
    Rift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. Currently, there is no treatment for RVFV infection and there is no proven safe and effective vaccine. Inhibition of RNA binding to RVFV nucleocapsid (N) protein represents an innovative antiviral therapeutic strategy because several essential steps in the RVFV replication cycle involve N binding to viral RNA. The overall goals of our research are to better understand how RVFV N protein interacts with RNA, to develop a high-throughput drug screening assay for identification of compounds that inhibit a N-RNA binding interaction and to test the efficacy of potential antiviral drug compounds during RVFV infection. Completion of the proposed research will result in an increased understanding of the basic biology of this important human pathogen and aid in the design of more powerful and effective anti-RVFV drugs

    A comparison of teres minor and infraspinatus muscle activation in the prone position

    Get PDF
    BackgroundThe electromyography (EMG) activity of the teres minor (TMi) and infraspinatus (IS) muscle has been demonstrated to vary depending on the arm position, such as in the coronal or scapular position, during intervention exercises. This may be reflected by different EMG activities demonstrated between the TMi and IS muscle during the acceleration and deceleration phases of the pitching motion. Tenderness in the scapular attachment site of the TMi muscle is often seen in baseball pitchers after pitching but not the attachment site of the IS muscle. However, few studies have investigated an interaction between TMi and IS muscle activity across different resistance exercises with different arm positions. The purpose of this study was to identify the feature of TMi and IS muscle activity in the presence of manual resistance applied in the prone position. MethodsEighteen collegiate baseball players volunteered their participation. Raw EMG amplitudes of the TMi, IS, posterior deltoid, middle deltoid, and upper trapezius muscles on the dominant shoulder were measured during intervention exercises. All subjects performed manual isometric resistance exercises: horizontal abduction (HABD) and external rotation (ER) of the glenohumeral joint with 40% of the manual maximum strength test in prone. The subjects also performed each of the HABD and ER resistance exercises with the arm actively positioned at 0° and 45° of ER of the glenohumeral joint in the coronal and scapular planes. ResultsBoth TMi and IS muscle activities significantly increased with the arm positioned at 45° of ER compared with 0° of ER regardless of the exercise (P \u3c .05). TMi activity was significantly greater with HABD resistance than IS muscle activity regardless of the arm positions, whereas it was significantly less with ER resistance than IS muscle activity. ConclusionThe findings of this study indicated that the TMi and IS muscles were most highly activated during the HABD resistance with the arm actively positioned at 45° of ER in the coronal plane. The results of this study have clinical implications regarding the careful selection of arm position in both exercise and clinical examination for the TMi and IS muscles

    An Initial Evaluation of the Tera Multithreaded Architecture and Programming System Using the C3I Parallel Benchmark Suite

    Get PDF
    The Tera Multithreaded Architecture (MTA) is a radical new architecture intended to revolutionize high-performance computing in both the scientific and commercial marketplaces. Each processor supports 128 threads in hardware. Extremely fast thread switching is used to mask latency in a uniform-access memory system without caching. It is claimed that these hardware characteristics allow compilers to easily transform sequential programs into efficient multithreaded programs for the Tera MTA. In this paper, we attempt to provide an objective initial evaluation of the performance of the Tera multithreaded architecture and programming system for general-purpose applications. The basis of our investigation is two programs from the C3I Parallel Benchmark Suite (C3IPBS). Both these programs have previously been shown to have the potential for large-scale parallelization. We compare the performance of these programs on (i) a fast uniprocessor, (ii) two conventional shared-memory multiprocessors, and (iii) the first installed Tera MTA (at the San Diego Supercomputer Center). On these platforms, we compare the effectiveness of both automatic and manual parallelization

    Can the Scapular Dyskinesis Test be Associated with Throwing Related Injuries During the Course of Collegiate Baseball Seasons?

    Get PDF
    Background A pattern of scapular dyskinesis on the dominant side has been demonstrated to be associated with a decrease in throwing arm conditions identified by a self-report outcome assessment in collegiate baseball pitchers during the course of a single season. However, it is unclear if symptomatic shoulders in baseball pitchers may be associated with the presence of scapular dyskinesis. Purpose To study the relationship between the presence of scapular dyskinesis and throwing-related injury in collegiate baseball pitchers during each respective course of up to four subsequent seasons. Methods A single Division 1 National Collegiate Athletic Association team participated in this study over a four-year-period. The scapular dyskinesis test was implemented during the preseason for baseball pitchers. Players were followed throughout each respective season to track the incidence of throwing-related upper extremity injuries. Results A total of 36 collegiate baseball pitchers (height: 185.3 ± 5.6 cm, weight: 88.8 ± 7.8 kg, age: 20.0 ± 1.5 years) consisting of 57 pitcher seasons were followed in this study, in which 18 pitchers remained with the team for more than one year. Twenty-seven of the 57 pitchers were classified as having scapular dyskinesis demonstrated at around 90° of shoulder flexion on the throwing side. Five injuries (13.2% of a total of 38 injuries) were diagnosed as throwing-related shoulder injuries during the course of the intercollegiate baseball seasons. Four of the five throwing-related shoulder injuries occurred in pitchers who had scapular dyskinesis on their dominant side. Consequently, the odds ratio was 5.04 for the collegiate pitchers with scapular dyskinesis on the throwing arm side associated with a throwing-related shoulder injury compared to those with no scapular dyskinesis (p = 0.16). No relationship was identified between scapular dyskinesis on the throwing arm side and throwing-related elbow injury. Eighty-one percent of the scapular dyskinesis test results were not changed on the throwing side from the previous to the following year for those 18 pitchers who were followed for more than one season, whereas 42.9% of the results remained unchanged on the non-throwing side. Conclusion The results suggest that collegiate baseball pitchers with dominant arm scapular dyskinesis likely are at increased risk of throwing-related shoulder injury. Level of evidence Level 2, Prospective Cohort Study

    Electromyography activity of the teres minor muscle with varying positions of horizontal abduction in the quadruped position

    Get PDF
    BackgroundThe teres minor (TMi) muscle exposed relatively high activity during the acceleration and deceleration phases of the throwing motion, compared with the infraspinatus muscle. However, few studies have identified TMi muscle activity in intervention exercises. The purpose of this study was to investigate TMi muscle activities in different horizontal adduction positions in the quadruped horizontal abduction exercise. This study hypothesized that TMi muscle activity would differ in response to resistance application across different horizontal adduction positions. Materials and methodsNineteen collegiate baseball players volunteered their participation. Raw electromyography activity of the TMi muscle along with 7 different muscles attached to the scapula on the dominant-side were collected, and normalized by each of the corresponding maximum voluntary isometric contractions. All subjects performed manual isometric resistance horizontal abduction exercises at 90° and 135° of abduction with 3 horizontal adduction angles in the quadruped position: 1) coronal, 2) scapular, and 3) sagittal plane. Electromyography data were also collected from rhythmical concentric contraction of horizontal abduction at 90° of abduction in the quadruped position. ResultsTMi muscle activity was significantly greater with the arm positioned in the coronal plane than that of the scapular and sagittal planes (41, 26, and 17% maximum voluntary isometric contraction, respectively) (P \u3c .05). ConclusionThe present study demonstrated that TMi muscle activity varied depending on horizontal adduction positions

    An Initial Evaluation of the Tera Multithreaded Architecture and Programming System Using the C3I Parallel Benchmark Suite

    Get PDF
    The Tera Multithreaded Architecture (MTA) is a radical new architecture intended to revolutionize high-performance computing in both the scientific and commercial marketplaces. Each processor supports 128 threads in hardware. Extremely fast thread switching is used to mask latency in a uniform-access memory system without caching. It is claimed that these hardware characteristics allow compilers to easily transform sequential programs into efficient multithreaded programs for the Tera MTA. In this paper, we attempt to provide an objective initial evaluation of the performance of the Tera multithreaded architecture and programming system for general-purpose applications. The basis of our investigation is two programs from the C3I Parallel Benchmark Suite (C3IPBS). Both these programs have previously been shown to have the potential for large-scale parallelization. We compare the performance of these programs on (i) a fast uniprocessor, (ii) two conventional shared-memory multiprocessors, and (iii) the first installed Tera MTA (at the San Diego Supercomputer Center). On these platforms, we compare the effectiveness of both automatic and manual parallelization
    • …
    corecore