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Abstract:  
The Tera Multithreaded Architecture (MTA) is a radical new architecture intended to 
revolutionize high-performance computing in both the scientific and commercial 
marketplaces. Each processor supports 128 threads in hardware. Extremely fast thread 
switching is used to mask latency in a uniform-access memory system without caching. It is 
claimed that these hardware characteristics allow compilers to easily transform sequential 
programs into efficient multithreaded programs for the Tera MTA. In this paper, we attempt 
to provide an objective initial evaluation of the performance of the Tera multithreaded 
architecture and programming system for general-purpose applications. The basis of our 
investigation is two programs from the C3I Parallel Benchmark Suite (C3IPBS). Both these 
programs have previously been shown to have the potential for large-scale parallelization. We 
compare the performance of these programs on (i) a fast uniprocessor, (ii) two conventional 
shared-memory multiprocessors, and (iii) the first installed Tera MTA (at the San Diego 
Supercomputer Center). On these platforms, we compare the effectiveness of both automatic 
and manual parallelization.  
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Pentium Pro  
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1  Introduction 
The Tera Multithreaded Architecture (MTA) [1] is a fascinating new approach to scalable high-
performance computing. Each processor supports 128 hardware threads and each word of memory 
has a full-empty bit. Extremely fast thread switching is used to mask memory latency in a uniform-
access shared-memory system without caching. Given a highly multithreaded program, the 
processor should almost never stall waiting for a memory access to complete. In addition, the 
performance of a highly multithreaded program should scale directly with the number of 
processors. The Tera designers boldly claim "the MTA overcomes issues that inhibit scaling on 
every other system" [1]. 

However, to effectively utilize the Tera MTA, a program must indeed be highly multithreaded. 
This requires either that the programmer writes an explicitly multithreaded program (even for a 
single-processor Tera MTA) or that a parallelizing compiler is used (possibly with some assistance 
from the programmer). Because of the difficulty of explicit multithreaded programming, the 
emphasis of the Tera programming system is on programmer-assisted compiler-based 
parallelization. Since the Tera MTA provides a flat memory structure and hardware support for 
extremely fine-grained multithreading, it is not unreasonable to hope that parallelizing compilers 
for the Tera MTA will be more successful than those for conventional multiprocessors. We might 
also hope that manual parallelization (where necessary) will be easier for the Tera MTA than for 
conventional multiprocessors. The Tera designers claim "Tera's compilers let the programmer write
code in a straightforward fashion, without bothering about the usual performance hacks required 
for other computers" [1]. 

In this paper, we attempt to evaluate both the execution performance of the Tera MTA and the ease 
of developing efficient general-purpose programs using the Tera programming system. The first 
Tera MTA (with two processors) has recently been installed at the San Diego Supercomputer 
Center. We are fortunate to have access to that machine and consulting services of the Tera 
engineers. As the basis of our investigation, we have performed experiments using two programs 
from the USAF Rome Laboratory Command, Control, Communication and Intelligence (C3I) 
Parallel Benchmark Suite (C3IPBS) [2]. These programs are compact, yet involve non-trivial data 
and control structures typical of interesting problems from many real-world domains. Both the 
programs (Threat Analysis and Terrain Masking) have previously been shown to have the potential 
for large-scale parallelization. If the Tera MTA is to live up to the claims of its designers, it is 
reasonable to expect that good performance should be achieved on these two programs without 
excessive programmer effort. 

For both the benchmark programs, we have performed experiments to compare the following:  

! Sequential execution on a fast commodity uniprocessor (a 500 MHz Digital Alpha).  
! Sequential execution and manual parallelization on a commodity shared-memory 

multiprocessor (a quad-processor 200 MHz Intel Pentium Pro).  
! Sequential execution, automatic parallelization, and manual parallelization on a conventional 

shared-memory supercomputer (a 16-processor HP Exemplar).  
! Automatic parallelization and manual parallelization on the Tera MTA.  

Through these experiments we compare the performance of the Tera MTA with conventional 
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uniprocessor and multiprocessor platforms, and assess the amount of programming effort that is 
required to obtain good performance on the Tera MTA. In addition, we make suggestions 
regarding appropriate programming techniques and practices for obtaining the best performance 
from the Tera MTA. 

The remainder of this paper is organized as follows: in Section 2, we describe the Tera MTA in 
more detail; in Section 3, we describe the C3IPBS in general and the two problems that we have 
chosen in particular; in Section 4, we describe our experimental goals and methods; in Section 5, 
we describe the Threat Analysis problem, program, and performance results; in Section 6, we 
describe the Terrain Masking problem, program, and performance results; in Section 7, we 
summarize our performance results and findings; and in Section 8, we conclude. 

2  The Tera MTA 
The Tera MTA is a scalable, shared-memory, general-purpose parallel computer that is intended to 
revolutionize high-performance computing in both the scientific and commercial marketplaces. 
The key features of the Tera multithreaded architecture are as follows:  

! Up to 256 processors per system.  
! 128 hardware threads (instruction streams/register sets) per processor.  
! 255 MHz clock speed.  
! Switching between hardware threads in one cycle.  
! Shared memory between all processors with no caching.  
! 64-way interleaved memory units.  
! Full-empty bit on every word of memory, enabling very fine-grained thread synchronization. 

The key features of the Tera operating system and programming system are as follows:  

! Fully symmetric, parallel version of Unix (not yet delivered at the time of writing).  
! Dynamic allocation/adjustment of processing resources to tasks during program execution.  
! Automatic parallelizing compilers for Fortran, C, and C++.  
! Compiler feedback to the programmer.  
! Programmer-inserted pragmas and directives for explicit parallelization.  
! Explicit thread creation using futures.  
! Compiler-created hardware thread creation/termination with 2 cycles overhead per thread.  
! Programmer-created software thread creation/termination with 50-100 cycles overhead per 

thread.  
! Thread synchronization in one cycle.  

The most important differences between the Tera MTA and conventional architectures are (i) 
hardware support for extremely lightweight multithreading, and (ii) the absence of a memory 
hierarchy (because memory latency is instead masking by thread switching). In this paper, we 
investigate the practical performance and programming consequences of these architectural 
innovations. 

3  The Benchmark Problems
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The U.S. Air Force Rome Laboratory C3I Parallel Benchmark Suite [2] consists of eight problems 
chosen to compactly represent the essential elements of real C3I applications. Each problem 
consists of the following:  

! A problem description giving the inputs and required outputs.  
! An efficient sequential program written in C to solve the problem.  
! The benchmark input data.  
! A correctness test for the benchmark output data.  

The C3IPBS is a good framework for evaluating the applicability of the Tera MTA and 
programming system to general-purpose applications. The C3IPBS problems are computationally 
intensive, compact, and involve non-trivial data and control structures. These are the kind of 
problems the Tera MTA will have to perform well on to make a significant impact in general-
purpose parallel computing. 

For this initial evaluation of the Tera MTA, we have chosen to perform experiments using the 
following two C3IPBS problems:  

1. Threat Analysis: A time-stepped simulation of the trajectories of incoming ballistic threats, 
with computation of options for intercepting the threats.  

2. Terrain Masking: Computation of the maximum safe flight altitude over all points in an 
uneven terrain containing ground-based threats.  

These are among the most algorithmically straightforward of the C3IPBS problems and stand the 
best chance of being parallelized without excessive programmer effort. Previous work with these 
two problems on conventional multiprocessors has shown that they both have the potential for 
large-scale parallelization. 

4  Experimental Goals and Methods 
The goal of this paper is to provide initial answers to the following two questions:  

1. What sort of performance can a multithreaded architecture such as the Tera MTA deliver, 
compared to conventional uniprocessor and multiprocessor architectures?  

2. What are appropriate methods for developing efficient general-purpose programs on a 
multithreaded architecture such as the Tera MTA, and how much programmer effort is 
required?  

For both benchmark problems, we have performed experiments on conventional uniprocessor and 
multiprocessor architectures, as well as on the Tera MTA. Table 1 gives the platforms used in our 
performance comparison. 

Machine Processors Memory Operating System

Digital AlphaStation 1 x 500 MHz Digital Alpha 21164A 500 MB Digital Unix 4.0C

NeTpower Sparta 4 x 200 MHz Intel Pentium Pro 500 MB Windows NT 4.0
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Table 1: Platforms used in our performance comparison. 

On conventional architectures, we have performed experiments to measure and compare the 
following:  

! Sequential execution on a single-processor Digital AlphaStation. This gives us a measure of 
"fast execution" on a top-of-the-line conventional processor.  

! Sequential execution and manual parallelization (algorithmic modification and thread library 
calls) on a quad-processor Pentium Pro system. This gives us a measure of the potential for 
coarse-grained multithreading.  

! Sequential execution, automatic parallelization, and manual parallelization (algorithmic 
modification, pragmas, and synchronization library calls) on a 16-processor HP Exemplar. 
This demonstrates the effectiveness of automatic parallelization for a conventional coarse-
grained shared-memory multiprocessor. It also gives us a measure of the success of manual 
parallelization for a conventional multiprocessor supercomputer.  

On the two-processor Tera MTA, we have performed experiments to measure and compare the 
following:  

! Sequential execution without any parallelization on one Tera MTA processor. This gives us a 
baseline measurement for performance on the Tera MTA.  

! Automatic parallelization on the Tera MTA.  
! Manual parallelization (using pragmas, synchronization variables, and futures) on the Tera 

MTA.  

The results of these experiments provide us with a set of performance numbers by which to 
compare the different architectures and programming systems. Just as important as the raw 
performance comparison are the reasons for the performance and the comparison of programmer 
effort required for the various programming systems. In particular, we are very interested in 
whether automatic parallelization of general-purpose applications is more effective for the Tera 
MTA than for conventional coarse-grained multiprocessors. 

5  Threat Analysis 

The Problem 

The Threat Analysis problem is a time-stepped simulation of the trajectories of incoming ballistic 
threats with computation of options for intercepting the threats. The input to the problem consists 
of (i) the trajectories of a set of incoming threats, and (ii) the locations and capabilities of a set of 
weapons that can be used to intercept the incoming threats. For each threat and weapon pair, the 
program must compute the time intervals over which the threat can be intercepted by the weapon. 
The benchmark provides five different input scenarios.

Hewlett-Packard Exemplar 16 x 180 MHz HP PA-8000 4 GB SPP-UX 5.3

Tera MTA 2 x 255 MHz Tera MTA-1 2 GB Carlos
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The Sequential Program 

Program 1 gives a slightly simplified, high-level pseudocode representation of the algorithm used 
in the sequential Threat Analysis program. 

    ThreatAnalysis( 
        in num_threats, in threats[],  
        in num_weapons, in weapons[],  
        out num_intervals, out intervals[]) 
    { 
        declare threat, weapon; 
        declare t0, t1, t2; 
 
        num_intervals = 0; 
        for (threat = 0 .. num_threats - 1) 
            for (weapon = 0 .. num_weapons - 1) { 
                t0 = initial detection time of threat; 
                while (weapon can intercept threat in [t0 .. impact time of
                    t1 = first time after t0 that weapon can intercept thre
                    t2 = last time after t1 that weapon can intercept threa
                    intervals[num_intervals] = (threat, weapon, [t1 .. t2])
             num_intervals = num_intervals + 1; 
                    t0 = t2 + 1; 
             } 
            } 
    } 

Program 1: Sequential Threat Analysis. 

The program computes a set of tuples of the form (threat, weapon, interval) indicating that the 
threat can be intercepted by the weapon over the time interval. Because of the constraints on threat 
interception, there can be zero, one, or more intervals associated with each (threat, weapon) pair. 
The t1 and t2 interception times within the inner loop are computed using time-stepped 
simulations of threat and weapon positions. 

The three nested loops in the program are not immediately parallelizable, because all iterations 
increment the num_intervals count and assign to the intervals array. The indices that a 
particular iteration assigns to cannot be determined without first executing the prior iterations. 
However, these shared variables are the only obstacles to parallelization of the outer two loops, as 
computation of intervals for each (threat, weapon) pair are otherwise independent of each other. 
The time-stepped simulations within the inner loop are not amenable to parallelization. 

Performance of the Sequential Program without Parallelization 

Table 2 gives the benchmark execution time (total time for all five input scenarios) of the 
sequential Threat Analysis program without parallelization on the platforms described in Section 4.

Platform Time (seconds)
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Table 2: Execution time of sequential Threat Analysis without parallelization. 

The relative performance of the conventional platforms is in line with their respective processor 
speeds and memory systems. The program is compute-bound, rather than memory-bound, so the 
faster processors perform best. The most interesting feature of these performance measurements is 
the extremely slow speed of the Tera MTA - roughly 14 times slower than the Alpha. The Tera 
MTA is not an efficient platform for execution of single-threaded programs. One reason is that a 
single thread on the Tera MTA can issue only one instruction every 21 cycles, giving roughly 5% 
processor utilization. 

Performance of Automatic Parallelization 

On both the Exemplar and Tera MTA platforms, the manufacturer-supplied automatic parallelizing 
compilers were unable to identify any practical opportunities for parallelization of the sequential 
Threat Analysis program. The automatic parallelizing compilers and analysis tools were unable 
make any suggestions regarding changes to the program (e.g., algorithmic modifications or the 
addition of pragmas) that might expose parallelism. The reason is that the algorithm is inherently 
sequential - the outer-loop iterations assign to shared variables and the inner loops are sequential 
time-stepped simulations. In addition, the program (like most general-purpose programs) contains 
chains of function calls, pointer operations, and non-trivial index expressions that thwart compiler 
analysis and make automatic parallelization extremely difficult. However, the program can be 
manually parallelized through relatively straightforward algorithmic modifications. This program 
is an example of the limitations of automatic parallelizing compilers for general-purpose 
applications. 

A Multithreaded Program 

It is relatively straightforward to manually modify the sequential Threat Analysis program to allow 
multithreading. Program 2 gives a slightly simplified, high-level pseudocode representation of the 
algorithm used in our multithreaded Threat Analysis program. 

    ThreatAnalysis( 
        in num_threats, in threats[], 
        in num_weapons, in weapons[], 
        in num_chunks, out num_intervals[], out intervals[][]) 
    { 
        declare chunk; 
 
        #pragma multithreaded 
        for (chunk = 0 .. num_chunks - 1) { 
            declare first_threat, last_threat; 

Alpha 187

Pentium Pro 458

Exemplar 343

Tera 2584
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            declare threat, weapon; 
            declare t0, t1, t2; 
 
            first_threat = (chunk*num_threats)/num_chunks; 
            last_threat = ((chunk+1)*num_threats)/num_chunks - 1; 
            num_intervals[chunk] = 0; 
            for (threat = first_threat .. last_threat) 
                for (weapon = 0 .. num_weapons - 1) { 
                    t0 = initial detection time of threat; 
                    while (weapon can intercept threat in [t0 .. impact tim
                        t1 = first time after t0 that weapon can intercept 
                        t2 = last time after t1 that weapon can intercept t
                        intervals[chunk][num_intervals[chunk]] = (threat, w
                 num_intervals[chunk] = num_intervals[chunk] + 1; 
                        t0 = t2 + 1; 
                 } 
                } 
        } 
    } 

Program 2: Multithreaded Threat Analysis. 

The outer loop over all threats has been replaced by a multithreaded loop in which each iteration is 
responsible for a different chunk (i.e., subrange) of the threats. The problem of the shared variables 
has been solved by modifying the algorithm so that each iteration increments its own 
num_intervals count and assigns to its own section of the intervals array. Declarations of 
other variables are localized by moving them into the inner blocks. The outer-loop iterations are 
now completely independent of each other and can be executed by separate threads. 

The drawback of this multithreaded program is that it requires a larger intervals array than the 
sequential program. Since there is no way to determine in advance the number of intervals that 
each iteration will compute, each iteration's section of the intervals array must be generously 
oversized. Therefore, the larger the number of chunks, the larger the intervals array. 

Performance of the Multithreaded Program on Conventional Multiprocessors 

Table 3 gives the benchmark execution time (total time for all five input scenarios) of the 
multithreaded Threat Analysis program on the quad-processor Pentium Pro platform described in 
Section 4. The program was manually parallelized using the Caltech Sthreads library [3] 
implemented on top of the Win32 thread API [4] supported by Windows NT and was executed 
using one chunk/thread per processor. 

Number of processors Time (seconds) Speedup

Sequential 458 N.A.

1 466 1.0

2 233 2.0
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Table 3: Execution time of multithreaded Threat Analysis on quad-processor Pentium Pro. 

Figure 1 shows the speedup of the multithreaded Threat Analysis program over sequential 
execution on the Pentium Pro platform. Excellent speedups are achieved, because the threads are 
completely independent and execute mostly within cache. 

 

Figure 1: Speedup of multithreaded Threat Analysis on quad-processor Pentium Pro. 

Table 4 gives the benchmark execution time (total time for all five input scenarios) of the 
multithreaded Threat Analysis program on the 16-processor Exemplar platform described in 
Section 4. The program was manually parallelized using the Exemplar shared-memory 
programming pragmas [5] and was executed using one chunk/thread per processor. 

3 157 2.9

4 117 3.9

Number of processors Time (seconds) Speedup

Sequential 343 N.A.

1 343 1.0

2 172 2.0

3 115 3.0

4 87 3.9

5 69 5.0

6 58 5.9

7 50 6.9
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Table 4: Execution time of multithreaded Threat Analysis on 16-processor Exemplar. 

Figure 2 shows the speedup of the multithreaded Threat Analysis program over sequential 
execution on the Exemplar platform. As on the Pentium Pro, excellent speedups are achieved, 
because the threads are completely independent and execute mostly within cache. 

 

Figure 2: Speedup of multithreaded Threat Analysis on 16-processor Exemplar. 

These performance measurements demonstrate that coarse-grained, outer-loop level multithreading 
is a straightforward, successful, and scalable approach to achieving parallelism for the Threat 
Analysis problem on shared-memory multiprocessors. 

Performance of the Multithreaded Program on the Tera MTA 

Table 5 gives the benchmark execution time (total time for all five input scenarios) of the 
multithreaded Threat Analysis program on the dual-processor Tera MTA platform described in 

8 43 7.9

9 39 8.8

10 35 9.9

11 32 10.7

12 29 11.7

13 27 12.7

14 26 13.4

15 24 14.4

16 22 15.4
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Section 4. The program was manually parallelized using the Tera parallelization pragmas [1] and 
was executed using 256 chunks. The Tera compiler determined the exact number of threads used. 

Table 5: Execution time of multithreaded Threat Analysis on dual-processor Tera MTA. 

The multithreaded program runs dramatically faster (32 times faster on one processor) than the 
sequential program on the Tera MTA. However, less than perfect speedup is achieved when 
moving from one to two processors. The less-than-ideal speedup may be a result of the 
development status of the current Tera MTA network or the number of threads used. 

Table 6 gives the benchmark execution time of the multithreaded Threat Analysis program on the 
dual-processor Tera MTA with varying numbers of chunks (and hence varying numbers of 
threads). 

Table 6: Execution time of multithreaded Threat Analysis with varying number of chunks on 
Tera MTA. 

The program requires hundreds of threads to execute efficiently on the Tera MTA. Since each 
input scenario for the Threat Analysis benchmark has 1000 threats, parallelization over threats in 
our multithreaded program easily supplies enough threads for efficient execution. However, 
because of the large numbers of chunks, a large intervals array is required. 

An alternative approach to parallelization of the Threat Analysis problem for the Tera MTA is to 
parallelize the outer loop over all threats without any kind of chunking. The problem of shared 
access to the num_intervals count and intervals array could be solved with very fine-
graining locking using Tera synchronization variables. This approach does not require an oversized 
intervals array, but still requires manual localization and replication of many variables. An 
unwelcome consequence of this approach is nondeterministic ordering of the elements of the 
intervals array due to the race condition associated with the locking. Nondeterminacy of 
results complicates testing and debugging. However, it is interesting that this alternative approach 

Number of Processors Time (seconds) Speedup

1 82 1.0

2 46 1.8

Number of Chunks Time (seconds)

8 386

16 197

32 104

64 61

128 46

256 46
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is viable for the Tera MTA, but not for our conventional coarse-grained multiprocessor platforms. 

Performance Comparison and Summary 

Table 7 gives a comparison and summary of the benchmark execution time (total time for all five 
input scenarios) of the Threat Analysis program on the platforms described in Section 4. Times are 
given for sequential execution, automatic parallelization and manual parallelization, where 
appropriate on the different platforms. 

Table 7: Performance comparison for execution times of Threat Analysis. 

The most interesting features of this performance comparison are (i) the failure of automatic 
parallelization, and (ii) the comparison of multithreaded execution on the Tera MTA with 
multithreaded execution on the conventional coarse-grained multiprocessor platforms. For this 
program, the performance of one 255 MHz Tera MTA processor is approximately equivalent to 
four 180 MHz Exemplar processors. Obtaining parallelism for the Tera MTA was no easier or 
more difficult than obtaining parallelism for the conventional multiprocessor platforms. In both 
cases, the automatic parallelizing compilers were not helpful and the same relatively 
straightforward manual modification was sufficient to obtain enough parallelism to efficiently 
utilize the machines. However, the Tera did offer more options for parallelization because of its 
support for fine-grained multithreading. Sequential execution is dramatically slower on the Tera 
MTA than on any of the other platforms. 

6  Terrain Masking 
The Terrain Masking problem is a computation of the maximum safe flight altitude over all points 
in an uneven terrain containing ground-based threats. The input to the problem consists of (i) the 

Parallelization Platform Time (seconds)

None

Alpha 187

Pentium Pro 458

Exemplar 343

Tera 2584

Automatic
Exemplar 343

Tera 2584

Manual

Pentium Pro (4 processors) 117

Exemplar (4 processors) 87

Exemplar (8 processors) 43

Exemplar (16 processors) 22

Tera MTA (1 processor) 82

Tera MTA (2 processors) 46
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ground elevation, for all points in the terrain, and (ii) the position and range of a set of ground-
based threats. The output of the problem consists of the maximum altitude at which an aircraft is 
invisible to all threats, for all points in the terrain. The benchmark provides five different scenarios 
as input. 

The Sequential Program 

Program 3 gives a slightly simplified, high-level pseudocode representation of the algorithm used 
in the sequential Terrain Masking program. 

    TerrainMasking( 
        in x_size, int y_size, in terrain[][],  
        in num_threats, in threats[], 
        out masking[][]) 
    { 
        declare x, y; 
        declare threat; 
        declare temp[][]; 
 
        for (x,y = 0 .. x_size - 1, 0 .. y_size - 1) 
            masking[x][y] = INFINITY; 
 
        for (threat = 0 .. num_threats - 1) { 
            for (x, y = region of influence of threat) 
                temp[x][y] = masking[x][y]; 
            for (x, y = region of influence of threat) 
                masking[x][y] = INFINITY; 
            for (x, y = region of influence of threat) 
                masking[x][y] = maximum safe altitude over x,y due to threa
            for (x, y = region of influence of threat) 
                masking[x][y] = Min(masking[x][y], temp[x][y]); 
        }  
    } 

Program 3: Sequential Terrain Masking. 

For each threat in turn, the program computes the maximum safe flight altitudes due to the threat 
over its region of influence, then minimizes these altitudes into the overall result. The maximum 
safe flight altitudes due to a threat cannot be computed directly into the overall result because the 
value at one point is computed from the values at neighboring points. For this reason, the altitudes 
due to a threat are minimized into the overall result only after the altitudes have been computed for 
all points in the region of influence. 

The outer loop over all threats is not immediately parallelizable, because the regions of influence 
of different threats can overlap. Parallelization requires that some kind of locking scheme be used 
for access to the masking array. Another approach is to modify the algorithm so that the terrain is 
partitioned into non-overlapping regions, with the maximum safe flight altitude computed 
independently within each region. However, this requires changes to the algorithm for computing 
the maximum safe flight altitude due to an individual threat - since one threat might span several 
regions. Yet another approach, which may be efficient on a fine-grained multithreaded architecture 
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such as the Tera MTA, is to parallelize the inner loops. 

Performance on Conventional Architectures 

Table 8 gives the benchmark execution time (total time for all five input scenarios) of the 
sequential Terrain Masking program without parallelization on the platforms described in Section 
4. 

Table 8: Execution time of sequential Terrain Masking without parallelization. 

The relative performance of the conventional platforms is in line with their respective processor 
speeds and memory systems. The program is memory-bound, rather than compute-bound, so 
processor speed is not the major determinant of execution time. As with Threat Analysis, the most 
interesting feature of these performance measurements is the slow speed of the Tera MTA - 
roughly 6 times slower than the Alpha. The speed difference is less than with Threat Analysis, 
because the conventional processors are not fully utilized in this memory-bound program. 

Performance of Automatic Parallelization 

On both the Exemplar and Tera MTA platforms, the manufacturer-supplied automatic parallelizing 
compilers were unable to identify any practical opportunities for parallelization of the sequential 
Terrain Masking program. The automatic parallelizing compilers and analysis tools were unable 
make any suggestions regarding changes to the program (e.g., algorithmic modifications or the 
addition of pragmas) that might expose parallelism. The outer loop of the program cannot be 
parallelized without algorithmic modifications, since its iterations assign to overlapping regions of 
the masking array. The inner loops contain opportunities for parallelization, however the 
program (like most programs) contains chains of function calls, pointer operations, and non-trivial 
index expressions that thwart compiler analysis and make automatic parallelization extremely 
difficult. Like the Threat Analysis program, this program is an example of the limitations of 
automatic parallelizing compilers for general-purpose applications. 

A Coarse-Grained Multithreaded Algorithm 

The outer loop over all threats of the sequential Terrain Masking program can be parallelized if 
locking is used to ensure that multiple threads do not assign to overlapping regions of the 
masking array at the same time. Program 4 gives a slightly simplified, high-level pseudocode 
representation of the algorithm used in our coarse-grained multithreaded Terrain Masking program.

    TerrainMasking( 

Platform Time (seconds)

Alpha 158

Pentium Pro 197

Exemplar 228

Tera 978
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        in x_size, int y_size, in terrain[][],  
        in num_threats, in threats[], 
        in num_blocks, in num_threads, out masking[][]) 
    { 
        declare x, y; 
        declare i, j; 
        declare thread; 
        declare blocks[][]; 
        declare locks[][]; 
 
        for (i,j = 0 .. num_blocks - 1, 0 .. num_blocks - 1) 
            blocks[i][j] = bounds of block i,j in blocking of terrain; 
        for (x,y = 0 .. x_size - 1, 0 .. y_size - 1) 
            masking[x][y] = INFINITY; 
 
        #pragma multithreaded 
        for (thread = 0 .. num_threads - 1) { 
            declare threat; 
            declare x, y; 
            declare temp[][]; 
 
            while (unprocessed threats) { 
                threat = next unprocessed threat; 
                for (x, y = region of influence of threat) 
                    temp[x][y] = INFINITY; 
                for (x, y = region of influence of threat) 
                    temp[x][y] = maximum safe altitude over x,y due to thre
                for (i,j = blocks overlapping with threat) { 
                    lock(locks[i][j]); 
                    for (x,y = region of overlap between threat and block i
                        masking[i][j] = Min(masking[x][y], temp[x][y]); 
                    unlock(locks[i][j]); 
                }        
            } 
        }  
    } 

Program 4: Coarse-grained multithreaded Terrain Masking. 

The outer loop over all threats has been replaced by a multithreaded loop in which each iteration 
dynamically processes individual threats until all threats have been processed. The problem of 
shared access to the masking array has been solved by blocking the terrain into equal-sized 
blocks, with a separate lock associated with each block. The role of the temp and masking 
arrays has been swapped in the computation of the maximum safe flight altitudes in the region of 
influence of a threat. The temp array is minimized back into the masking array block by block. 
To avoid interference between threads, blocks are locked before writing and unlocked after writing.

The drawback of the multithreaded program is that each thread requires its own temp array. With 
the Terrain Masking benchmark, the region of influence of each threat is up to 5% of the total 
terrain. Therefore, this approach to multithreading does not require excessive extra storage for 
small numbers of threads (e.g., sixteen), but may be impractical for large numbers of threads (e.g., 
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hundreds). 

Performance of the Coarse-Grained Multithreaded Program on Conventional 
Multiprocessors 

Table 9 gives the benchmark execution time (total time for all five input scenarios) of the 
multithreaded Terrain Masking program on the quad-processor Pentium Pro platform described in 
Section 4. The program was manually parallelized using the Caltech Sthreads library [3] 
implemented on top of the Win32 thread API [4] supported by Windows NT and was executed 
using one thread per processor and ten-by-ten blocking. 

Table 9: Execution time of multithreaded Terrain Masking on quad-processor Pentium Pro. 

Figure 3 shows the speedup of the multithreaded Terrain Masking program over sequential 
execution on the Pentium Pro platform. On one processor, the multithreaded program achieves an 
incidental speedup over the sequential program because of the memory access effect of swapping 
the roles of the temp and masking arrays. However, the speedup on multiple processors is 
considerably less than ideal, with three-fold speedup on four processors. The reason is that the 
program is memory-bound, causing contention between threads for access to the Pentium Pro's 
shared memory. 

Number of processors Time (seconds) Speedup

Sequential 197 N.A.

1 172 1.1

2 97 2.0

3 74 2.7

4 65 3.0
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Figure 3: Speedup of coarse-grained multithreaded Terrain Masking on quad-processor 
Pentium Pro. 

Table 10 gives the benchmark execution time (total time for all five input scenarios) of the 
multithreaded Terrain Masking program on the 16-processor Exemplar platform described in 
Section 4. The program was manually parallelized using the Exemplar shared-memory 
programming pragmas [5] and was executed using one thread per processor and ten-by-ten 
blocking. 

Table 10: Execution time of multithreaded Terrain Masking on 16-processor Exemplar. 

Figure 4 shows the speedup of the multithreaded Terrain Masking program over sequential 
execution on the Exemplar platform. As on the Pentium Pro, considerably less than ideal speedups 
are achieved on the Exemplar because of memory contention between the threads. 

Number of processors Time (seconds) Speedup

Sequential 228 N.A.

1 228 1.0

2 102 2.2

3 90 2.5

4 59 3.9

5 62 3.8

6 43 5.3

7 51 4.5

8 37 6.2

9 49 4.7

10 34 6.7

11 41 5.6

12 34 7.0

13 32 7.1

14 40 5.7

15 41 5.6

16 37 6.2
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Figure 4: Speedup of multithreaded Terrain Masking on 16-processor Exemplar. 

These performance measurements demonstrate that obtaining scalable multithreaded speedups for 
memory-bound programs such as the Terrain Masking program is difficult on conventional shared-
memory multiprocessors. 

Performance of a Fine-Grained Multithreaded Program on the Tera MTA 

The coarse-grained multithreaded Terrain Masking program requires too much memory on the 
Tera MTA. Efficient utilization of the Tera MTA requires a large number of threads and each 
thread requires its own temp array. Therefore, we have implemented a fine-grained multithreaded 
Terrain Masking program. The inner loops that compute the maximum safe flight altitude for an 
individual threat are parallelized, instead of the outer loop. The loops are parallelized using the 
Tera parallelization pragmas and futures constructs [1]. Fine-grained parallelization was no easier 
or more difficult than coarse-grained parallelization. However, as with the Threat Analysis 
program, it is interesting that this approach is viable for the Tera MTA, but not for our 
conventional coarse-grained multiprocessor platforms. 

Table 11 gives the benchmark execution time (total time for all five input scenarios) of the fine-
grained multithreaded Terrain Masking program on the dual-processor Tera MTA platform 
described in Section 4. 

Table 11: Execution time of multithreaded Terrain Masking on dual-processor Tera MTA. 

The multithreaded program runs dramatically faster (20 times faster than on one processor) than 

Number of Processors Time (seconds) Speedup

1 48 1.0

2 34 1.4
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the sequential program on the Tera MTA. However, as with the Threat Analysis program, 
considerably less than perfect speedup is achieved when moving from one to two processors. 
Again, the less-than-ideal speedup may be a result of the development status of the current Tera 
MTA network or the number of threads used. 

Performance Comparison and Summary 

Table 12 gives a comparison and summary of the benchmark execution time (total time for all five 
input scenarios) of the Terrain Masking program on the platforms described in Section 4. Times 
are given for sequential execution, automatic parallelization and manual parallelization where 
appropriate on the different platforms. 

Table 12: Performance comparison for execution times of Terrain Masking. 

As with the Threat Analysis performance comparison, the most interesting features of this 
performance comparison are (i) the failure of automatic parallelization, and (ii) the comparison of 
multithreaded execution on the Tera MTA with multithreaded execution on the conventional 
coarse-grained multiprocessor platforms. For this program, the performance of the dual-processor 
255 MHz Tera MTA processor is approximately equivalent to eight 180 MHz Exemplar 
processors. Obtaining parallelism for the Tera MTA was no easier or more difficult than obtaining 
parallelism for the conventional multiprocessor platforms. On the conventional multiprocessors, 
coarse-grained outer-loop parallelism was a practical approach. On the Tera MTA, fine-grained 
inner-loop parallelism was a practical approach. In both cases, the automatic parallelizing 
compilers were not helpful. Sequential execution is dramatically slower on the Tera MTA than on 
any of the other platforms. 

7  Performance Summary 

Parallelization Platform Time (seconds)

None

Alpha 158

Pentium Pro 197

Exemplar 228

Tera 978

Automatic
Exemplar 228

Tera 978

Manual

Pentium Pro (4 processors) 65

Exemplar (4 processors) 59

Exemplar (8 processors) 37

Exemplar (16 processors) 37

Tera MTA (1 processor) 48

Tera MTA (2 processors) 34
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In this section, we summarize our observations from the preceding performance experiments. 

Sequential Execution 

The Tera MTA is not an efficient platform for execution of a single-threaded program (unless it is 
executed concurrently with many other programs). Sequential execution on a 255 MHz Tera MTA 
was much slower than on any of our conventional platforms. For both benchmark programs, 
sequential execution on the Tera MTA was approximately 5 times slower than sequential execution 
on a 200 MHz Pentium Pro. The Tera MTA was 6 times slower than a 500 MHz Alpha for the 
relatively memory-bound program (Terrain Masking) and 15 times slower for the relatively 
compute-bound program (Threat Analysis). 

One reason for the Tera MTA's poor performance with single-threaded programs is that a single-
thread can issue only one instruction every 21 cycles. Another reason is that the Tera MTA has no 
caching and relies on multiple threads to mask memory latency. A program must be highly 
multithreaded to obtain good performance on even a single-processor Tera MTA. The Tera 
engineers tell us that 80 concurrent threads are typically required to obtain full utilization of a 
single Tera MTA processor. 

Automatic Parallelization 

On both the Tera MTA and Exemplar platforms, the manufacturer-supplied automatic parallelizing 
compilers were unable to identify any practical opportunities for parallelization in either of the two 
sequential benchmark programs. Nor were they able to make any suggestions regarding changes to 
the program (e.g., algorithmic modifications, assertions, or pragmas) that might allow the compiler 
to parallelize the program. 

Automatic parallelization of general-purpose programs is an extremely difficult task. There are two 
fundamental obstacles:  

1. Efficient parallelization usually requires more than parallelization of loops in the sequential 
program. It involves significant modification of the underlying algorithm. This is the case 
with both benchmark programs. It is unreasonable to expect a compiler to deduce the high-
level purpose of a program then automatically develop an alternative algorithm to solve the 
same problem.  

2. General-purpose programs typically involve hundreds of separately compiled modules, 
chains of function calls, non-trivial index expressions, and operations on pointers that thwart 
compiler analysis of data dependencies and program flow. With both benchmark problems, 
the compilers were not even able to parallelize the manually transformed programs without 
the explicit parallel loop pragmas.  

We did not see any indication that the current generation of automatic parallelizing compilers will 
be useful to the developers of general-purpose applications - particularly those that are typically 
written in languages such as C, C++, and Java - on either the Tera MTA or conventional 
multiprocessor platforms. Our experiments did not address the question of whether automatic 
parallelization is more successful for the Tera MTA than conventional multiprocessors for 
programs from more specialized domains, e.g., matrix-oriented programs written in Fortran.
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Manual Parallelization 

The Tera MTA and conventional coarse-grained multiprocessors have different strengths and 
weaknesses with regard to the ease of manual parallelization. These differences can be summarized 
as follows:  

! A weakness of the Tera MTA is that it requires large numbers of threads for efficient 
execution. With the Threat Analysis program, splitting the outer loop into 16 threads yields 
over 15-fold speedup on a 16-processor Exemplar, whereas hundreds of threads are required 
for efficient execution on a multiprocessor Tera MTA.  
 
Splitting a program into many threads can be more difficult than splitting it into a few 
threads. The number of threads that can be obtained from the outer loop of the Terrain 
Masking problem is limited by the fact that the benchmark data sets contain only 60 threats 
per input scenario. This is plenty of threads for the Exemplar, but not enough for the Tera 
MTA. 
 
Splitting a program into many threads can require more extra memory than splitting it into a 
few threads, because data replication is often proportional to the number of threads. For both 
benchmark problems, outer-loop parallelization requires extra array storage for each thread.  

! A strength of the Tera MTA is that its provides hardware support for truly fine-grained 
multithreading. For both benchmark problems, algorithms based on fine-grained 
multithreading of inner loops are practical on the Tera MTA that are not practical on our 
conventional multiprocessor platforms. 
 
On conventional multiprocessors with operating system support for threads, thread creation 
costs tens of thousands to hundreds of thousands of cycles and thread synchronization costs 
hundreds to thousands of cycles. On the Tera MTA, thread creation and synchronization cost 
only a few cycles.  

The difficulty of exposing enough parallelism sometimes makes manual parallelization more 
difficult for the Tera MTA than for conventional multiprocessors. The ease of expressing efficient 
fine-grained parallelism sometimes makes manual parallelization easier for the Tera MTA than for 
conventional multiprocessors. 

Multithreaded Execution 

Programs with a sufficiently large number of threads run dramatically faster than equivalent single-
threaded programs on the Tera MTA. For the benchmark programs, multithreaded execution on a 
single-processor 255 MHz Tera MTA was (i) between 2 and 3.5 times faster than sequential 
execution on the 500 MHz Alpha platform, (ii) approximately one third faster than multithreaded 
execution on the quad-processor 200 MHz Pentium Pro platform, and (iii) approximately the same 
speed as multithreaded execution on four processors of the 180 MHz Exemplar platform. 

Since the current Tera MTA configuration has only two processors and its interconnection network 
is under development, our experiments do not adequately address the issue of scalability of 
multithreaded programs on multiprocessor Tera MTA platforms. Our limited multiprocessor 
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experiments show speedups of 1.4 and 1.8 on two processors compared to one processor. These 
less-than-ideal speedups may be a result of the development status of the network or insufficient 
threads to fully utilize two processors. 

8  Conclusion 
The goal of this work was to provide an initial evaluation of the Tera MTA and programming 
system for general-purpose applications. Although we must be careful not to over-generalize 
experimental results for two applications from the same problem domain running on a prototype 
dual-processor Tera MTA, we are now in a position to highlight some clear strengths and 
weaknesses of the Tera MTA. 

The most obvious weakness of the Tera MTA is its extremely poor performance for single-
threaded programs. While the designers may claim that the Tera MTA is not intended for 
sequential programs, this is clearly a practical problem for users porting sequential programs from 
other platforms. It often takes a considerable amount of time to parallelize a sequential program, 
and the user may want some kind of acceptable performance from the sequential program while 
that parallelization is under way. In addition, some programs or parts of programs are inherently 
sequential. Our experiments indicate that one Tera MTA processor is approximately as powerful a 
four Exemplar processors. A sequential program runs at 25% peak performance on four Exemplar 
processors, but runs at only 5% of peak performance on one Tera MTA processor. 

A related weakness of the Tera MTA is its reliance on large numbers of threads to obtain good 
performance - even on a single processor. Not all programs have the potential for hundreds of 
threads of control. This makes parallelization of some programs difficult for the Tera MTA. For 
example, a program in which the only opportunity for parallelism is an outer loop consisting of 16 
independent iterations with equal workload will perfectly utilize a 16-processor Exemplar. 
However, this program contains only a small fraction of the parallelism necessary to fully utilize 
even a single-processor Tera MTA. Even programs that naturally split into large numbers of 
threads may contain sequences of execution that do not parallelize well. These sequences will 
become execution bottlenecks on the Tera MTA. 

A major strength of the Tera MTA is its ability to efficiently execute truly fine-grained 
multithreaded programs. Thread creation, scheduling, and synchronization operations are many 
orders of magnitude less costly on the Tera MTA than on conventional multiprocessor platforms. It 
is very exciting for the programmer to be able to exploit fine-grained inner-loop parallelism as well 
as coarse-grained outer-loop parallelism. Similarly, synchronization on every element of a large 
data structure is practical, instead of requiring that the programmer artificially subdivide the 
structure solely for synchronization purposes. For many problems, there are more options for easy 
and efficient parallelization for the Tera MTA than for a conventional multiprocessor platform. 

It is a shame that the flip side of the Tera MTA's ability to efficiently execute hundreds of fine-
grained threads seems to be its inability to execute efficiently with a small or moderate number of 
threads. The Tera MTA would be a much more appealing platform if it could execute efficiently 
with both large and moderate numbers of threads and provide reasonable performance for single-
threaded programs. 

A potential strength of the Tera MTA that we were unable to investigate on a dual-processor 
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configuration is scalability to large numbers of processors. Our experiments demonstrate that 
memory contention is sometimes a major obstacle to achieving scalability on conventional shared-
memory multiprocessor platforms. It is possible that the Tera model of large numbers of fine-
grained threads and no memory hierarchy may be effective in overcoming this obstacle. If this is 
the case, it would be major breakthrough in scalable supercomputing. We look forward to 
investigating this issue when Tera MTAs with large numbers of processors are installed in the near 
future. 

The Tera automatic parallelizing compiler does not appear to offer much help to programmers 
developing general-purpose multithreaded applications for the Tera MTA. Automatic 
parallelization of large, general-purpose applications - particularly those written in C and C++ - is 
an extremely difficult problem that will probably not be solved anytime soon. Developers of 
general-purpose applications for the Tera MTA should expect that they will have to manually 
parallelize their programs in the forseeable future. However, parallelizing compilers may offer 
some assistance for applications from more specific domains, e.g., scientific programs written in 
Fortran that deal mostly with regular matrices. 

It is difficult to compare of the raw performance of the Tera MTA with that of conventional 
processors. A single-processor Tera MTA appears to be approximately three times as fast as a 
cutting-edge commodity uniprocessor and a little faster than a slightly outdated commodity quad-
processor shared-memory multiprocessor. In a cost-performance comparison, the Tera MTA is 
very clearly the loser. However, this comparison is not entirely fair to the Tera MTA, as the 
commodity processors are mass-produced and based on decade-old processor families. There is a 
huge cost to developing a new processor and producing it is small quantities. Unfortunately, we 
have no means of estimating the "true cost" of a mature, mass-produced Tera MTA processor. The 
eventual legacy of the Tera MTA may be the incorporation of hardware support for multithreading 
in future commodity processors. 

This paper presents an initial evaluation of the Tera MTA. There is need for further objective 
evaluation using more problems, problems from different domains, and Tera MTA configurations 
with larger numbers of processors. We look forward to the installation of larger and more powerful 
Tera MTA platforms so that we and others can continue to explore this exciting new approach to 
high-performance computing. 

Availability 
The programs described in this paper are available from the Caltech Structured Multithreaded 
Programming Project web site at http://threads.cs.caltech.edu/. 
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