12 research outputs found

    Geocoding Error, Spatial Uncertainty, and Implications for Exposure Assessment and Environmental Epidemiology

    No full text
    Although environmental epidemiology studies often rely on geocoding procedures in the process of assigning spatial exposure estimates, geocoding methods are not commonly reported, nor are consequent errors in exposure assignment explored. Geocoding methods differ in accuracy, however, and, given the increasing refinement of available exposure models for air pollution and other exposures, geocoding error may account for an increasingly larger proportion of exposure misclassification. We used residential addresses from a reasonably large, dense dataset of asthma emergency department visits from all New York City hospitals (n = 21,183; 26.9 addresses/km2), and geocoded each using three methods (Address Point, Street Segment, Parcel Centroid). We compared missingness and spatial patterning therein, quantified distance and directional errors, and quantified impacts on pollution exposure estimates and assignment to Census areas for sociodemographic characterization. Parcel Centroids had the highest overall missingness rate (38.1%, Address Point = 9.6%, Street Segment = 6.1%), and spatial clustering in missingness was significant for all methods, though its spatial patterns differed. Street Segment geocodes had the largest mean distance error (µ = 29.2 (SD = 26.2) m; vs. µ = 15.9 (SD = 17.7) m for Parcel Centroids), and the strongest spatial patterns therein. We found substantial over- and under-estimation of pollution exposures, with greater error for higher pollutant concentrations, but minimal impact on Census area assignment. Finally, we developed surfaces of spatial patterns in errors in order to identify locations in the study area where exposures may be over-/under-estimated. Our observations provide insights towards refining geocoding methods for epidemiology, and suggest methods for quantifying and interpreting geocoding error with respect to exposure misclassification, towards understanding potential impacts on health effect estimates

    Fine-Scale Source Apportionment Including Diesel-Related Elemental and Organic Constituents of PM2.5 across Downtown Pittsburgh

    No full text
    Health effects of fine particulate matter (PM2.5) may vary by composition, and the characterization of constituents may help to identify key PM2.5 sources, such as diesel, distributed across an urban area. The composition of diesel particulate matter (DPM) is complicated, and elemental and organic carbon are often used as surrogates. Examining multiple elemental and organic constituents across urban sites, however, may better capture variation in diesel-related impacts, and help to more clearly separate diesel from other sources. We designed a “super-saturation” monitoring campaign of 36 sites to capture spatial variance in PM2.5 and elemental and organic constituents across the downtown Pittsburgh core (~2.8 km2). Elemental composition was assessed via inductively-coupled plasma mass spectrometry (ICP-MS), organic and elemental carbon via thermal-optical reflectance, and organic compounds via thermal desorption gas-chromatography mass-spectrometry (TD-GCMS). Factor analysis was performed including all constituents—both stratified by, and merged across, seasons. Spatial patterning in the resultant factors was examined using land use regression (LUR) modelling to corroborate factor interpretations. We identified diesel-related factors in both seasons; for winter, we identified a five-factor solution, describing a bus and truck-related factor [black carbon (BC), fluoranthene, nitrogen dioxide (NO2), pyrene, total carbon] and a fuel oil combustion factor (nickel, vanadium). For summer, we identified a nine-factor solution, which included a bus-related factor (benzo[ghi]fluoranthene, chromium, chrysene, fluoranthene, manganese, pyrene, total carbon, total elemental carbon, zinc) and a truck-related factor (benz[a]anthracene, BC, hopanes, NO2, total PAHs, total steranes). Geographic information system (GIS)-based emissions source covariates identified via LUR modelling roughly corroborated factor interpretations

    Spatial Patterns in Rush-Hour vs. Work-Week Diesel-Related Pollution across a Downtown Core

    No full text
    Despite advances in monitoring and modelling of intra-urban variation in multiple pollutants, few studies have attempted to separate spatial patterns by time of day, or incorporated organic tracers into spatial monitoring studies. Due to varying emissions sources from diesel and gasoline vehicular traffic, as well as within-day temporal variation in source mix and intensity (e.g., rush-hours vs. full-day measures), accurately assessing diesel-related air pollution within an urban core can be challenging. We allocated 24 sampling sites across downtown Pittsburgh, Pennsylvania (2.8 km2) to capture fine-scale variation in diesel-related pollutants, and to compare these patterns by sampling interval (i.e., “rush-hours” vs. “work-week” concentrations), and by season. Using geographic information system (GIS)-based methods, we allocated sampling sites to capture spatial variation in key traffic-related pollution sources (i.e., truck, bus, overall traffic densities). Programmable monitors were used to collect integrated work-week and rush-hour samples of fine particulate matter (PM2.5), black carbon (BC), trace elements, and diesel-related organics (polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes), in summer and winter 2014. Land use regression (LUR) models were created for PM2.5, BC, total elemental carbon (EC), total organic carbon (OC), elemental (Al, Ca, Fe), and organic constituents (total PAHs, total hopanes), and compared by sampling interval and season. We hypothesized higher pollution concentrations and greater spatial contrast in rush-hour, compared to full work-week samples, with variation by season and pollutant. Rush-hour sampling produced slightly higher total PM2.5 and BC concentrations in both seasons, compared to work-week sampling, but no evident difference in spatial patterns. We also found substantial spatial variability in most trace elements and organic compounds, with comparable spatial patterns using both sampling paradigms. Overall, we found higher concentrations of traffic-related trace elements and organic compounds in rush-hour samples, and higher concentrations of coal-related elements (e.g., As, Se) in work-week samples. Mean bus density was the strongest LUR predictor in most models, in both seasons, under each sampling paradigm. Within each season and constituent, the bus-related terms explained similar proportions of variance in the rush-hour and work-week samples. Rush-hour and work-week LUR models explained similar proportions of spatial variation in pollutants, suggesting that the majority of emissions may be produced during rush-hour traffic across downtown. Results suggest that rush-hour emissions may predominantly shape overall spatial variance in diesel-related pollutants
    corecore