677 research outputs found

    Communicating biopsy results from breast screening assessment::current practice in English breast screening centres and staff perspectives of telephoning results

    Get PDF
    Objective To record how breast screening centres in England deliver all biopsy results (cancer/non-cancer) from the breast assessment visit.Design Online survey of 63 of 79 breast screening centres in England from all regions (East Midlands, East of England, London, North East Yorkshire & Humber, North West, South East, South West, West Midlands). The survey contained quantitative measures of frequency for telephoning biopsy results (routinely, occasionally or never) and optional qualitative free-text responses. Surveys were completed by a staff member from each centre.Results There were no regional trends in the use of telephone results services, (X² (14, n=63)=11.55, p=0.64), Centres who telephoned results routinely did not deliver results sooner than centres who deliver results in-person (X² (16, n=63)=12.76, p=0.69).When delivering cancer results, 76.2% of centres never telephone results and 23.8% of centres occasionally telephone results. No centres reported delivering cancer results routinely by telephone. Qualitative content analysis suggests that cancer results are only telephoned at the patient request and under exceptional circumstances.When delivering non-cancer results, 12.7% of centres never telephoned results, 38.1% occasionally telephoned results and 49.2% routinely telephoned results. Qualitative content analysis revealed different processes for delivering telephone results, including patient choice and scheduling an in-person results appointment for all women attending breast assessment, then ringing non-cancer results unexpectedly ahead of this prebooked appointment.Conclusions In the National Health Service Breast Screening Programme, breast assessment results that are cancer are routinely delivered in-person. However, non-cancer breast assessment results are often routinely delivered by telephone, despite breast screening policy recommendations. More research is needed to understand the impact of telephoning results on women attending breast assessment, particularly women who receive a non-cancer result. Future research should also consider how women themselves might prefer to receive their results

    Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia

    Get PDF
    This is a freely-available open access publication. Please cite the published version which is available via the DOI link in this record.Heterozygous glucokinase (GCK) mutations cause mild, fasting hyperglycaemia from birth. Although patients are usually asymptomatic and have glycaemia within target ranges, some are put on pharmacological treatment. We aimed to investigate how many patients are on pharmacological treatment and the impact of treatment on glycaemic control.European Community’s Seventh Framework ProgrammeNIHR Exeter Clinical Research FacilityWellcome Trus

    Clinical and Molecular Characterisation Of Hyperinsulinaemic Hypoglycaemia In Infants Born Small-For-Gestational Age

    Get PDF
    OBJECTIVE: To characterise the phenotype and genotype of neonates born small-for-gestational age (SGA; birth weight <10th centile) who developed hyperinsulinaemic hypoglycaemia (HH). METHODS: Clinical information was prospectively collected on 27 SGA neonates with HH, followed by sequencing of KCNJ11 and ABCC8. RESULTS: There was no correlation between the maximum glucose requirement and serum insulin levels. Serum insulin level was undetectable in five infants (19%) during hypoglycaemia. Six infants (22%) required diazoxide treatment >6 months. Normoglycaemia on diazoxide <5 mg/kg/day was a safe predictor of resolved HH. Sequencing of KCNJ11/ABCC8 did not identify any mutations. CONCLUSIONS: Serum insulin levels during hypoglycaemia taken in isolation can miss the diagnosis of HH. SGA infants may continue to have hypofattyacidaemic hypoketotic HH beyond the first few weeks of life. Recognition and treatment of this group of patients are important and may have important implications for neurodevelopmental outcome of these patients

    Juvenile diabetes and visual impairment: Wolfram syndrome

    Get PDF
    This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.The Wellcome Trust, UK funded genetic testing.Published version, Accepted version (12 month embargo), Submitted versio

    Sequencing PDX1 (insulin promoter factor 1) in 1788 UK individuals found 5% had a low frequency coding variant, but these variants are not associated with Type 2 diabetes

    Get PDF
    OnlineOpen Article. This is a copy of an article published in Diabetic Medicine. This journal is available online at: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1464-5491Genome-wide association studies have identified >30 common variants associated with Type 2 diabetes (>5% minor allele frequency). These variants have small effects on individual risk and do not account for a large proportion of the heritable component of the disease. Monogenic forms of diabetes are caused by mutations that occur in <1:2000 individuals and follow strict patterns of inheritance. In contrast, the role of low frequency genetic variants (minor allele frequency 0.1-5%) in Type 2 diabetes is not known. The aim of this study was to assess the role of low frequency PDX1 (also called IPF1) variants in Type 2 diabetes

    Falha de resposta à glibenclamida em criança brasileira com diabetes melito neonatal permanente e síndrome DEND devido a mutação C166Y no gene KCNJ11 (Kir6.2)

    Get PDF
    Heterozygous activating mutations of KCNJ11 (Kir6.2) are the most common cause of permanent neonatal diabetes mellitus (PNDM) and several cases have been successfully treated with oral sulfonylureas. We report on the attempted transfer of insulin therapy to glibenclamide in a 4-year old child with PNDM and DEND syndrome, bearing a C166Y mutation in KCNJ11. An inpatient transition from subcutaneous NPH insulin (0.2 units/kg/d) to oral glibenclamide (1 mg/kg/d and 1.5 mg/kg/d) was performed. Glucose and C-peptide responses stimulated by oral glucose tolerance test (OGTT), hemoglobin A1c levels, the 8-point self-measured blood glucose (SMBG) profile and the frequency of hypoglycemia episodes were analyzed, before and during treatment with glibenclamide. Neither diabetes control nor neurological improvements were observed. We concluded that C166Y mutation was associated with a form of PNDM insensitive to glibenclamide.As mutações ativadoras, heterozigóticas do gene KCNJ11 (Kir6.2) são a causa mais freqüente de diabetes melito neonatal permanente (DMNP) e a terapêutica oral com sulfoniluréias tem sido bem sucedida em muitos destes casos. Relatamos o processo de substituição da insulinoterapia convencional para o tratamento oral com glibenclamida em uma paciente de 4 anos, portadora de DMNP e síndrome DEND devido a uma mutação C166Y no gene KCNJ11. A insulina NPH (0,2 U/kg/dia) foi substituída pela glibenclamida (1 mg/kg/dia e 1,5 mg/kg/dia) durante internação hospitalar. As respostas de glicose e peptídeo-C no teste de tolerância oral à glicose (OGTT), os níveis de hemoglobina glicada, o perfil de glicemias capilares de 8 pontos e a freqüência de hipoglicemias foram comparados antes e durante o tratamento com glibenclamida. Não houve melhora no controle glicêmico, nem no quadro neurológico. Concluímos que a mutação C166Y associa-se a uma forma de DMNP insensível à glibenclamida

    Population-Based Assessment of a Biomarker-Based Screening Pathway to Aid Diagnosis of Monogenic Diabetes in Young-Onset Patients

    Get PDF
    This is the author accepted manuscript. The final version is available from the American Diabetes Association via the DOI in this record.Objective: Monogenic diabetes, a young-onset form of diabetes, is often misdiagnosed as Type 1 diabetes, resulting in unnecessary treatment with insulin. A screening approach for monogenic diabetes is needed to accurately select suitable patients for expensive diagnostic genetic testing. We used C-peptide and islet autoantibodies, highly sensitive and specific biomarkers for discriminating Type 1 from non-Type 1 diabetes, in a biomarker screening pathway for monogenic diabetes. Research Design and Methods: We studied patients diagnosed ≤30y, currently <50y, in two UK regions with existing high detection of monogenic diabetes. The biomarker screening pathway comprised 3 stages: 1) Assessment of endogenous insulin secretion using urinary C-peptide/creatinine ratio (UCPCR); 2) If UCPCR≥0.2nmol/mmol, measurement of GAD and IA2 islet autoantibodies; 3) If negative for both autoantibodies, molecular genetic diagnostic testing for 35 monogenic diabetes subtypes. Results: 1407 patients participated (1365 no known genetic cause, 34 monogenic diabetes, 8 cystic-fibrosis-related diabetes). 386/1365(28%) had UCPCR≥0.2nmol/mmol. 216/386(56%) of these patients were negative for GAD and IA2 and underwent molecular genetic testing. 17 new cases of monogenic diabetes were diagnosed (8 common MODY (Sanger sequencing), 9 rarer causes (next generation sequencing)) in addition to the 34 known cases (estimated prevalence of 3.6% (51/1407) (95%CI: 2.7-4.7%)). The positive predictive value was 20%, suggesting a 1-in-5 detection rate for the pathway. The negative predictive value was 99.9%. Conclusions: The biomarker screening pathway for monogenic diabetes is an effective, cheap, and easily implemented approach to systematically screening all young-onset patients. The minimum prevalence of monogenic diabetes is 3.6% of patients diagnosed ≤30y.This study was funded by the Department of Health and Wellcome Trust Health Innovation Challenge Award (HICF-1009-041; WT-091985). ATH and SE are Wellcome Trust Senior Investigators. ATH is an NIHR Senior Investigator. BS, ATH, MH, SE, and BK are core members of the NIHR Exeter Clinical Research Facility. EP is a Wellcome Trust New Investigator. TM is supported by NIHR CSO Fellowship. JP is partly funded by the NIHR Collaboration for Leadership in Applied Health Research and Care for the South West (PenCLAHRC)

    DLG5 variants are associated with multiple congenital anomalies including ciliopathy phenotypes

    Get PDF
    Background: Cilia are dynamic cellular extensions that generate and sense signals to orchestrate proper development and tissue homeostasis. They rely on the underlying polarisation of cells to participate in signalling. Cilia dysfunction is a well-known cause of several diseases that affect multiple organ systems including the kidneys, brain, heart, respiratory tract, skeleton and retina. Methods: Among individuals from four unrelated families, we identified variants in discs large 5 (DLG5) that manifested in a variety of pathologies. In our proband, we also examined patient tissues. We depleted dlg5 in Xenopus tropicalis frog embryos to generate a loss-of-function model. Finally, we tested the pathogenicity of DLG5 patient variants through rescue experiments in the frog model. Results: Patients with variants of DLG5 were found to have a variety of phenotypes including cystic kidneys, nephrotic syndrome, hydrocephalus, limb abnormalities, congenital heart disease and craniofacial malformations. We also observed a loss of cilia in cystic kidney tissue of our proband. Knockdown of dlg5 in Xenopus embryos recapitulated many of these phenotypes and resulted in a loss of cilia in multiple tissues. Unlike introduction of wildtype DLG5 in frog embryos depleted of dlg5, introduction of DLG5 patient variants was largely ineffective in restoring proper ciliation and tissue morphology in the kidney and brain suggesting that the variants were indeed detrimental to function. Conclusion: These findings in both patient tissues and Xenopus shed light on how mutations in DLG5 may lead to tissue-specific manifestations of disease. DLG5 is essential for cilia and many of the patient phenotypes are in the ciliopathy spectrum.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.JM is supported by the Yale MSTP NIH T32GM007205 Training Grant, the Yale Predoctoral Program in Cellular and Molecular Biology T32GM007223 Training Grant and the Paul and Daisy Soros Fellowship for New Americans. EKM is supported by a grant from the Hartwell Foundation and is a Hartwell Fellow. EW is supported by the Leopoldina Fellowship Program (LPDS 2015-07). MK is part of the NEOCYST consortium funded by the German Federal Ministry of Research and Education (BMBF, grant 01GM1903A). SE is a Wellcome Senior Investigator. This research was supported by grants from the National Institutes of Health to FH (DK076683, DK088767, DK068306). NM is supported by funding from the National Institutes of Health T32-DK007726-33 grant at Boston Children's Hospital. MKK is supported by NIH/NICHD (R01HD102186).published version, accepted version, submitted versio

    Unsupervised Clustering of Missense Variants in HNF1A Using Multidimensional Functional Data Aids Clinical Interpretation

    Get PDF
    Exome sequencing in diabetes presents a diagnostic challenge because depending on frequency, functional impact, and genomic and environmental contexts, HNF1A variants can cause maturity-onset diabetes of the young (MODY), increase type 2 diabetes risk, or be benign. A correct diagnosis matters as it informs on treatment, progression, and family risk. We describe a multi-dimensional functional dataset of 73 HNF1A missense variants identified in exomes of 12,940 individuals. Our aim was to develop an analytical framework for stratifying variants along the HNF1A phenotypic continuum to facilitate diagnostic interpretation. HNF1A variant function was determined by four different molecular assays. Structure of the multi-dimensional dataset was explored using principal component analysis, k-means, and hierarchical clustering. Weights for tissue-specific isoform expression and functional domain were integrated. Functionally annotated variant subgroups were used to re-evaluate genetic diagnoses in national MODY diagnostic registries. HNF1A variants demonstrated a range of behaviors across the assays. The structure of the multi-parametric data was shaped primarily by transactivation. Using unsupervised learning methods, we obtained high-resolution functional clusters of the variants that separated known causal MODY variants from benign and type 2 diabetes risk variants and led to reclassification of 4% and 9% of HNF1A variants identified in the UK and Norway MODY diagnostic registries, respectively. Our proof-of-principle analyses facilitated informative stratification of HNF1A variants along the continuum, allowing improved evaluation of clinical significance, management, and precision medicine in diabetes clinics. Transcriptional activity appears a superior readout supporting pursuit of transactivation-centric experimental designs for high-throughput functional screens.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.WT_/Wellcome Trust/United Kingdom MR/L020149/1/MRC_/Medical Research Council/United Kingdom U01 DK085545/DK/NIDDK NIH HHS/United States U01 DK105535/DK/NIDDK NIH HHS/United Statespublished version, accepted version (6 month embargo), submitted versio
    corecore