189 research outputs found

    Trace element and isotope constraints on crustal anatexis by upwelling mantle melts in the North Atlantic Igneous Province: an example form the Isle of Rum, NW Scotland

    Get PDF
    Sr and Nd isotope ratios, together with lithophile trace elements, have been measured in a representative set of igneous rocks and Lewisian gneisses from the Isle of Rum in order to unravel the petrogenesis of the felsic rocks that erupted in the early stages of Palaeogene magmatism in the North Atlantic Igneous Province (NAIP). The Rum rhyodacites appear to be the products of large amounts of melting of Lewisian amphibolite gneiss. The Sr and Nd isotopic composition of the magmas can be explained without invoking an additional granulitic crustal component. Concentrations of the trace element Cs in the rhyodacites strongly suggests that the gneiss parent rock had experienced Cs and Rb loss prior to Palaeogene times, possibly during a Caledonian event. This depletion caused heterogeneity with respect to 87Sr/86Sr in the crustal source of silicic melts. Other igneous rock types on Rum (dacites, early gabbros) are mixtures of crustalmelts and and primarymantle melts. Forward Rare Earth Element modelling shows that late stage picritic melts on Rum are close analogues for the parent melts of the Rum Layered Suite, and for the mantle melts that caused crustal anatexis of the Lewisian gneiss. These primary mantle melts have close affinities to Mid-Oceanic Ridge Basalts (MORB), whose trace element content varies from slightly depleted to slightly enriched. Crustal anatexis is a common process in the rift-to-drift evolution during continental break-up and the formation of Volcanic Rifted Margins systems. The ‘early felsic–later mafic’ volcanic rock associations from Rum are compared to similar associations recovered from the now-drowned seaward-dipping wedges on the shelf of SE Greenland and on the Vøring Plateau (Norwegian Sea). These three regions show geochemical differences that result from variations in the regional crustal composition and the depth at which crustal anatexis took place

    Macroscopic and spectroscopic analysis of lanthanide adsorption to bacterial cells

    Get PDF
    This study was designed to combine surface complexation modelling of macroscopic adsorption data with X-ray Absorption Spectroscopic (XAS) measurements to identify lanthanide sorption sites on the bacterial surface. The adsorption of selected representatives for light (La and Nd), middle (Sm and Gd) and heavy (Er and Yb) lanthanides was measured as a function of pH, and biomass samples exposed to 4 mg/L lanthanide at pH 3.5 and 6 were analysed using XAS. Surface complexation modelling was consistent with the light lanthanides adsorbing to phosphate sites, whereas the adsorption of middle and heavy lanthanides could be modelled equally well by carboxyl and phosphate sites. The existence of such mixed mode coordination was confirmed by Extended X-ray Absorption Fine Structure (EXAFS) analysis, which was also consistent with adsorption to phosphate sites at low pH, with secondary involvement of carboxyl sites at high adsorption density (high pH). Thus, the two approaches yield broadly consistent information with regard to surface site identity and lanthanide coordination environment. Furthermore, spectroscopic analysis suggests that coordination to phosphate sites is monodentate at the metal/biomass ratios used. Based on the best-fitting pKa site, we infer that the phosphate sites are located on N-acetylglucosamine phosphate, the most likely polymer on gram-negative cells with potential phosphate sites that deprotonate around neutral pH

    Age constraints on intra-formational unconformities in Upper Jurassic-Lower Cretaceous carbonates in northeast Turkey; geodynamic and hydrocarbon implications

    Get PDF
    Upper Jurassic-lowermost Cretaceous carbonate build-ups are imaged on seismic data in the Black Sea. They form important, untested, hydrocarbon reservoirs that are the focus of active exploration. Outcrop analogues to these build-ups around the Black Sea contain a series of subaerial exposure surfaces. The hiatuses associated with a number of these subaerial exposure surfaces have been dated in a well exposed Callovian or Upper Oxfordian to Barremian shallow-water inner platform carbonate succession (the Berdiga Formation) in the Eastern Pontides using strontium isotope stratigraphy and foraminiferal biostratigraphy. They span the latest Kimmeridgian to Tithonian or Berriasian, and the Hauterivian to Barremian. Less well constrained, but broadly contemporaneous stratigraphic gaps in multiple successions around the Black Sea provide additional insights and point to a regional driving mechanism. The timing of hiatus formation does not correspond to periods of eustatic lowstand. It does coincide, however, with Late Tithonian to Berriasian and Hauterivian to Early Aptian episodes of rifting in the Greater Caucasus Basin, located farther to the north. Thus, it is possible that subaerial exposure was caused by rift flank uplift during periods of regional extension. Uplift due to slab break off is discounted as a control because it post-dates (rather than pre-dates) locally developed Kimmeridgian magmatism. Rift-flank uplift is likely to have also affected carbonate build-ups on the intervening rift shoulders of the eastern Black Sea, the Shatskiy Ridge and the Mid Black Sea High. At outcrop, subaerial exposure is often associated with karstification and secondary porosity development. Similar processes may have occurred in the offshore helping to enhance the reservoir quality of these exploration targets

    Refined model of incremental emplacement based on structural evidence from the granodioritic Newry igneous complex, Northern Ireland

    Get PDF
    Although many intrusions are now known to have been incrementally emplaced, the mechanisms through which this takes place are generally poorly understood. The Newry igneous complex was incrementally emplaced within the Southern Uplands-Down-Longford terrane of Northern Ireland during late Caledonian sinistral transtension. This study uses a variety of new and existing data and techniques to provide a fuller and firmer understanding of incremental emplacement than has previously been available, addressing both deep-crustal processes and those operating within the emplacement site. Host-rock orientations suggest that some of the accommodation space for the Newry igneous complex was generated due to pull-apart tectonics operating within the Southern Uplands-Down-Longford terrane. Local host-rock deflections, concentric igneous foliations, and concentric linear anisotropy of magnetic susceptibility (AMS)fabrics show that inflation due to magma overpressure also generated significant space. Strong AMS fabrics close to the boundaries of some magma pulses in turn suggest that inflation was accomplished by injection of individual magma pulses and was thus incremental. The dome-like orientations of mineral foliations within plutons and the truncation of steep local host-rock tracts by the Newry igneous complex imply that the complex consists of four laccolithic bodies. On a larger scale, it is suggested that the deep-seated Argyll and Newry lineaments represent faults that allowed magma generated at depth to ascend to the crustal level of the Southern Uplands-Down-Longford tract boundaries. It is also inferred that sinistral movement along the Argyll and Newry lineaments may have produced the releasing bend within the Southern Uplands-Down-Longford terrane. Higher in the crust, reduced confining pressure resulted in tectonic opening along this releasing bend. This local stress field induced horizontal magma flow and emplacement of the Newry igneous complex as laccolithic bodies. This study suggests that simplistic emplacement models should largely be abandoned in favor of holistic models incorporating the multiple interdependent processes operating during magma ascent and emplacement

    The Last Post: British Press Representations of Veterans of the Great War

    Get PDF
    Harry Patch (1898–2009) was the last surviving soldier to have fought in the trenches of the Western Front, entering the media spotlight in 1998 when he was approached to contribute to the BBC documentary Veterans. Media coverage of Patch and the cultivation of his totemic status were particularly prodigious in anticipating and marking his death, producing a range of reflections on its historical, social and cultural significance. Focusing on the British popular press, this article examines media coverage of the last decade of Patch’s life. It considers the way in which the Great War is memorialised in the space of public history of the media in terms of the personalisation and sentimentalisation of Patch, exploring how he serves as a synecdoche for the millions of others who fought, how he embodies ideas of generational and social change, and how the iconography of the Great War’s contemporaneous representation works in the space of its memorialisation

    Gondwana break-up related magmatism in the Falkland Islands

    Get PDF
    Jurassic dykes (c. 182 Ma) are widespread across the Falkland Islands and exhibit considerable geochemical variability. Orthopyroxene-bearing NW–SE-oriented quartz-tholeiite dykes underwent fractional crystallization at >1 GPa, and major element constraints suggest that they were derived by melting of a pyroxenite-rich source. They have εNd182 in the range –6 to –11 and 87Sr/86Sr182 >0.710 and therefore require an old lithospheric component in their source. A suite of basaltic andesites and andesites exhibit geochemical compositions transitional between Ferrar and Karoo magma types, and are similar to those seen in the KwaZulu-Natal region of southern Africa and the Theron Mountains of Antarctica. Olivine-phyric intrusions equilibrated at 182 1.6–3.6 and 87Sr/86Sr182 0.7036–0.7058) that require limited interaction with old continental lithosphere. A suite of plagioclase-phyric intrusions with 87Sr/86Sr182 c. 0.7035 and εNd182 c. +4, and low Th/Ta and La/Ta ratios (c. 1 and c. 15, respectively) also largely escaped interaction with the lithosphere. These isotopically depleted intrusions were probably emplaced synchronously with Gondwana fragmentation and the formation of new oceanic lithosphere. Estimates of mantle potential temperature from olivine equilibration temperatures do not provide unequivocal evidence for the presence of a plume thermal anomaly beneath the Falkland Islands at 182 Ma

    Extremely high He isotope ratios in MORB-source mantle from the proto-Iceland plume

    Get PDF
    The high <sup>3</sup>He/<sup>4</sup>He ratio of volcanic rocks thought to be derived from mantle plumes is taken as evidence for the existence of a mantle reservoir that has remained largely undegassed since the Earth's accretion. The helium isotope composition of this reservoir places constraints on the origin of volatiles within the Earth and on the evolution and structure of the Earth's mantle. Here we show that olivine phenocrysts in picritic basalts presumably derived from the proto-Iceland plume at Baffin Island, Canada, have the highest magmatic <sup>3</sup>He/<sup>4</sup>He ratios yet recorded. A strong correlation between <sup>3</sup>He/<sup>4</sup>He and <sup>87</sup>Sr/<sup>86</sup>Sr, <sup>143</sup>Nd/<sup>144</sup>Nd and trace element ratios demonstrate that the <sup>3</sup>He-rich end-member is present in basalts that are derived from large-volume melts of depleted upper-mantle rocks. This reservoir is consistent with the recharging of depleted upper-mantle rocks by small volumes of primordial volatile-rich lower-mantle material at a thermal boundary layer between convectively isolated reservoirs. The highest <sup>3</sup>He/<sup>4</sup>He basalts from Hawaii and Iceland plot on the observed mixing trend. This indicates that a <sup>3</sup>He-recharged depleted mantle (HRDM) reservoir may be the principal source of high <sup>3</sup>He/<sup>4</sup>He in mantle plumes, and may explain why the helium concentration of the 'plume' component in ocean island basalts is lower than that predicted for a two-layer, steady-state model of mantle structure

    Precessional variability of 87 Sr/86 Sr in the late Miocene Sorbas Basin: An interdisciplinary study of drivers of interbasin exchange

    Get PDF
    We present the first subprecessional record of seawater 87Sr/86Sr isotope ratios for a marginal Mediterranean subbasin. The sediments contained in this interval (three precessional cycles between 6.60 and 6.55 Ma) are important because they record conditions during the transition to the Messinian Salinity Crisis (MSC; 5.97 to 5.33 Ma), an event for which many details are still poorly understood. The record, derived from planktic foraminifera of the late Miocene Sorbas Basin (SE Spain), shows brief excursions with precessional cyclicity to 87Sr/86Sr ratios higher than coeval ocean 87Sr/86Sr. The hydrologic conditions required to generate the observed record are investigated using box modeling, constrained using a new paleodepth estimate (150 to 250 m) based on benthic foraminiferal assemblages. The box model results highlight the role of climate‐driven interbasin density contrast as a significant driver of, or impediment to, exchange. The results are particularly significant in the context of the MSC, where 87Sr/86Sr excursions have been interpreted purely as a consequence of physical restriction. To replicate the observed temporal patterns of lithological variations and 87Sr/86Sr isotope excursions, the Sorbas Basin “box” must have a mainly positive hydrologic budget, in contrast with the Mediterranean's negative budget during the late Miocene. This result has implications for the assumption of synchronous deposition of specific sedimentary layers (sapropels) between marginal and open Mediterranean settings at subprecessional resolution. A net positive hydrologic budget in marginal Mediterranean subbasins may reconcile observations of freshwater inclusions in gypsum deposits

    Sr-Nd isotope geochemistry of the early Precambrian sub-alkaline mafic igneous rocks from the southern Bastar craton, Central India

    Get PDF
    Sr–Nd isotope data are reported for the early Precambrian sub-alkaline mafic igneous rocks of the southern Bastar craton, central India. These mafic rocks are mostly dykes but there are a few volcanic exposures. Field relationships together with the petrological and geochemical characteristics of these mafic dykes divide them into two groups; Meso-Neoarchaean sub-alkaline mafic dykes (BD1) and Paleoproterozoic (1.88 Ga) sub-alkaline mafic dykes (BD2). The mafic volcanics are Neoarchaean in age and have very close geochemical relationships with the BD1 type. The two groups have distinctly different concentrations of high-field strength (HFSE) and rare earth elements (REE). The BD2 dykes have higher concentrations of HFSE and REE than the BD1 dykes and associated volcanics and both groups have very distinctive petrogenetic histories. These rocks display a limited range of initial 143Nd/144Nd but a wide range of apparent initial 87Sr/86Sr. Initial 143Nd/144Nd values in the BD1 dykes and associated volcanics vary between 0.509149 and 0.509466 and in the BD2 dykes the variation is between 0.510303 and 0.510511. All samples have positive εNd values the BD1 dykes and associated volcanics have εNd values between +0.3 and +6.5 and the BD2 dykes between +1.9 to +6.0. Trace element and Nd isotope data do not suggest severe crustal contamination during the emplacement of the studied rocks. The positive εNd values suggest their derivation from a depleted mantle source. Overlapping positive εNd values suggest that a similar mantle source tapped by variable melt fractions at different times was responsible for the genesis of BD1 (and associated volcanics) and BD2 mafic dykes. The Rb–Sr system is susceptible to alteration and resetting during post-magmatic alteration and metamorphism. Many of the samples studied have anomalous apparent initial 87Sr/86Sr suggesting post-magmatic changes of the Rb–Sr system which severely restricts the use of Rb–Sr for petrogenetic interpretation
    corecore