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Abstract 50 
 51 

This study was designed to combine surface complexation modelling of macroscopic 52 

adsorption data with X-ray  Absorption Spectroscopic (XAS) measurements to identify 53 

lanthanide sorption sites on the bacterial surface. The adsorption of selected representatives 54 

for light (La and Nd), middle (Sm and Gd) and heavy (Er and Yb) lanthanides was measured 55 

as a function of pH, and biomass samples exposed to 4 mg/L lanthanide at pH 3.5 and 6 were 56 

analysed using XAS. Surface complexation modelling was consistent with the light 57 

lanthanides adsorbing to phosphate sites, whereas the adsorption of middle and heavy 58 

lanthanides could be modelled equally well by carboxyl and phosphate sites. The existence of 59 

such mixed mode coordination was confirmed by Extended X-ray Absorption Fine Structure 60 

(EXAFS) analysis, which was also consistent with adsorption to phosphate sites at low pH, 61 

with secondary involvement of carboxyl sites at high adsorption density (high pH). Thus, the 62 

two approaches yield broadly consistent information with regard to surface site identity and 63 

lanthanide coordination environment. Furthermore, spectroscopic analysis suggests that 64 

coordination to phosphate sites is monodentate at the metal/biomass ratios used. Based on the 65 

best fitting pKa site, we infer that the phosphate sites are located on N-acetylglucosamine 66 

phosphate, the most likely polymer on gram-negative cells with potential phosphate sites that 67 

deprotonate around neutral pH. 68 

 69 
 70 

1 Introduction 71 
 72 
 73 

Despite a decade of experimental studies involving adsorption of metals to bacterial surfaces, 74 

the mechanistic basis of the adsorption reactions remains an open question. Early 75 

experimental studies relied almost exclusively on surface complexation modelling to 76 

postulate reaction stoichiometry and the identity of surface sites to which the metals were 77 
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adsorbed (Fein et al., 1997; Daughney et al., 1998; Fowle & Fein, 1999; Haas et al., 2001; 78 

Ngwenya et al., 2003; Yee et al., 2004). Central to this postulate was the assumption that 79 

surface functional groups must deprotonate to generate a negative surface site before 80 

positively charged metal ions could adsorb (Fein et al., 1997). Given that potentiometric 81 

titrations have tentatively identified surface functional groups with different pKa values (Fein 82 

et al., 1997; Small et al., 1999; Haas et al., 2001; Yee and Fein, 2001; Martinez et al., 2002; 83 

Phoenix et al., 2002; Ngwenya et al., 2003; Borrok et al., 2005; Dittrich & Sibler, 2006; 84 

Gélabert et al. 2006; Guiné et al., 2006; Guiné et al., 2007; Ojeda et al., 2008; Tourney et al., 85 

2008, Lalonde et al., 2008; Pokrovsky et al., 2008), including acidic (carboxyl groups), 86 

neutral (phosphate groups) and basic (hydroxyl/amine groups), surface complexation models 87 

suggested that metal adsorption at acidic and circum-neutral pH occurred predominantly to 88 

carboxyl groups.  89 

 Three subsequent developments cast doubt on this assumption. (i) Fowle et al (2000) 90 

reported significant uranyl (UO2
2+) adsorption onto Bacillus subtilis at very low pH, which 91 

could only be successfully modelled assuming adsorption to undeprotonated phosphate sites. 92 

This was later confirmed by X-ray adsorption spectroscopy (XAS) experiments by Kelly et al 93 

(2002). (ii) Through a rigorous mathematical description of ferrous iron adsorption to B. 94 

subtilis, Châtellier and Fortin (2004) showed that metal adsorption commences well before 95 

sites start to de-protonate, and that even at low pH, adsorption appeared to occur 96 

predominantly to neutral pKa sites. (iii) Further XAS experiments by Boyanov et al (2003) 97 

revealed that at low pH, Cd2+ adsorption occurred to phosphate sites, as opposed to carboxyl 98 

sites postulated by Fein et al (1997). What emerged from these observations was that surface 99 

complexation models provided only circumstantial evidence of the adsorption stoichiometry 100 

but that a detailed understanding of the binding mechanism required spectroscopic 101 

confirmation (Kelly et al., 2002). Nevertheless, stability constants derived from surface 102 
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complexation models have been used to predict metal mobility in porous media (Yee & Fein, 103 

2002; Turner & Fein, 2007) and biofilms (Phoenix & Holmes, 2008) with reasonable success. 104 

 In the last decade or so, the biogeochemical behaviour of lanthanides has received 105 

increasing attention. One reason for this emphasis is that lanthanides have been used as 106 

fertilisers for over 20 years, in East Asia at least (Tyler, 2004). Although their toxicity in such 107 

systems is unknown, they provide possible analogues for studying the physiological uptake 108 

mechanisms of similarly charged (trivalent) toxic metals such as Al (Bennet & Green, 1992; 109 

Ishikawa et al., 1996; Ding et al., 2005), which are often difficult to study because of their 110 

low solubility under natural pH conditions. Some lanthanides are also by-products of the 111 

nuclear fuel cycle, and the similarity in valence to some of the actinides makes them good 112 

analogues for understanding the behaviour of these more problematic elements (Markai et al., 113 

2003). If studied as a suite, lanthanide fractionation patterns make them important indicators 114 

of geochemical processes (Henderson, 1984), and have recently been suggested as potential 115 

bio-signatures owing to unique fractionation patterns that develop in contact with biological 116 

surfaces (Takahashi et al., 2005; Takahashi et al., 2007). 117 

 Unlike the common trace metals, however, relatively fewer studies have examined the 118 

adsorption of lanthanides by microbes. Among the early reports on selected lanthanides, there 119 

was an overwhelming view that lanthanide interaction with bacteria occurred predominantly 120 

via surface adsorption, postulating adsorption to carboxyl sites as the main mechanism (e.g. 121 

Bayer & Bayer, 1991; Andres et al., 1993; Texier et al., 1999; Philip et al., 2000; Texier et 122 

al., 2000).  More recently, Fein et al (2001) calculated a log K of 5.1±0.2 for monodentate Nd 123 

adsorption to carboxyl sites on Bacillus subtilis cells.  By comparison, Markai et al (2003) 124 

used time-resolved laser-induced fluorescence spectroscopy to identify surface sites 125 

responsible for Eu adsorption to Bacillus subtilis. The spectroscopic measurements suggested 126 

carboxyl complexation at low pH, with minor contribution from phosphate sites at circum-127 
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neutral pH. Similar techniques, applied to the adsorption of Eu to three different gram-128 

negative bacteria by Ozaki et al (2005), revealed differences in the coordination environment 129 

of Eu among strains, suggesting that coordination may depend on fine scale differences in 130 

cell surface chemistry. Lastly, using distribution coefficients for the simultaneous adsorption 131 

of 15 lanthanides, Takahashi et al (2005) have postulated that adsorption is likely to occur 132 

predominantly to phosphate groups at low pH, with carboxyl sites only coming into play at 133 

low biomass concentrations. The selective adsorption of the heavy rare earth elements 134 

(HREE) by phosphate sites was invoked to explain the extreme HREE-enrichment observed 135 

at high biomass concentrations, based on pattern matching using phosphate-containing 136 

ligands. 137 

 The objective of this study was to attempt a consistent model of lanthanide adsorption on 138 

bacterial cell surfaces using selected elements representing light (Lanthanum and 139 

Neodymium), middle (Samarium and Gadolinium) and heavy (Erbium and Ytterbium) 140 

lanthanides. Macroscopic adsorption and surface complexation modelling of the adsorption 141 

data is combined with X-ray absorption spectroscopic measurements in order to calculate 142 

site-specific surface complexation constants for lanthanide adsorption, and to identify 143 

adsorption sites on cell surfaces. Several studies have used time-resolved laser-induced 144 

fluorescence spectroscopy (Texier et al., 2000;  Markai et al., 2003; Ozaki et al., 2005)) to 145 

study lanthanide adsorption to bacterial surfaces. However, to our knowledge, no previous 146 

study has employed XAS to investigate adsorption of lanthanides to bacterial cells.  147 

 148 

2 Experimental Methods 149 

2.1 Biomass preparation 150 

A copper-resistant strain of gram-negative Pantoea agglomerans (formerly identified to 151 

genus level as belonging to Enterobacteriacea, Ngwenya et al., 2003) was grown for 24 152 
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hours in 2L flasks containing 1L of media made with 30g/L tryptone soya broth and 0.5% 153 

yeast extract. The bacteria were harvested by centrifugation for 20 minutes at 23,420 x g and 154 

4°C. The cells were re-suspended in 1L of de-ionised water and stirred at 4°C for about 20 155 

minutes on a magnetic stirrer. This process was repeated three times, after which cells were 156 

frozen overnight and then freeze-dried to yield a dry powder that was used in the 157 

experiments. Although this approach is different from similar metal-bacteria adsorption 158 

studies which use fresh cells, our ultimate objective is to study the whole suite of lanthanides 159 

(plus Y), using the same batch of cells, in order to avoid inter-culture variability reported in 160 

these other studies (e.g. Heinrich et al., 2007). Viability tests using LIVE/DEAD BacLightTM 161 

molecular probes have shown most of the cells (>90%) to be viable after this treatment. 162 

 163 

2.2 Adsorption Edge Experiments 164 

Sorption experiments were conducted as a function of pH using suspensions of the bacteria in 165 

0.01M NaClO4 electrolyte in acid-cleaned, 50 ml polycarbonate centrifuge tubes. A stock 166 

suspension was made from the lyophilised cells by first re-hydrating the cells for 1 hour in 167 

0.01M NaClO4 at 4°C. Cells were then rinsed in the electrolyte three times, each followed by 168 

centrifugation at 17,210 x g for 10 minutes. After the final rinse, electrolyte was added to 169 

dilute the cell suspension to the desired concentration, followed by addition of metal from 170 

1000 mg/L stock solutions in 1% HNO3. The pH of this stock suspension was then adjusted 171 

upward in ~0.25 pH steps whilst continuously purging the headspace with N2 to avoid 172 

dissolution of CO2 and potential precipitation of carbonates. At each pH, from 2.5 upwards, 173 

20 ml was transferred into a 50 ml polycarbonate centrifuge tube and equilibrated for 3 hours 174 

on a carousel rotating at 30 revolutions per minute. Two 5 ml sub-samples were transferred 175 

into pre-weighed glass vials and evaporated to constant weight in order to determine the exact 176 

biomass concentration, after correcting for a 5 ml electrolyte blank. Suspension pH was 177 
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measured at room temperature (23±1 °C) using a glass combination electrode connected to a 178 

Hanna Instrument HI 9025 pH/Eh meter after a 3-point calibration using Merck buffers of 179 

4.00, 7.00 and 9.22. Although the background electrolyte (0.01 M) is within the range of 180 

NBS buffers (~0.1 M), we tested the response of the pH probe by checking the calibration 181 

against a pH 4.00 buffer made in 0.01M NaClO4 instead of ultrapure water, and recorded a 182 

pH of 3.99±0.01. Furthermore a 10-3 M HCl solution diluted from a 1 M volumetric standard 183 

gave a pH of 3.01±0.02. 184 

 The above equilibration time was chosen based on preliminary kinetic experiments which 185 

showed attainment of constant adsorption and suspension pH between 1 and 3 hours.  186 

Furthermore, the upward-pH adjustment was adopted because previous experiments with this 187 

strain have shown that it can produce soluble organics around circum-neutral pH values 188 

(Ngwenya et al., 2003; Ngwenya, 2007), which are likely to decrease sorption density, as also 189 

observed for Bacillus subtilis by Takahashi et al (2005). Nevertheless, a reversibility test was 190 

performed based on a modification of the method of Fowle and Fein (1999), in which a 191 

parent suspension spiked with Er was split into equal volumes to ensure the biomass and 192 

initial metal concentrations were the same. One half was equilibrated at pH 2.5 for 3 hours, 193 

then adjusted upwards in roughly 0.25 pH steps, with sub-sampling (20 ml) followed by 194 

further equilibration for 3 hours. The second half was initially equilibrated at pH 6.5, then 195 

adjusted downwards and re-equilibrated for a further 3 hours.   196 

 For four of the six lanthanides (La, Nd, Sm and Yb), two experiments, each with a 197 

different biomass and initial metal concentration, were carried out. We present data for 198 

suspensions using nominally ~0.2 g/L biomass with both 2 mg/L and 4 mg/L initial 199 

lanthanide concentrations. Details of individual experiments are given in Table 1.  200 

Calculations using MINTEQA2 (Allison et al., 1991) and first hydrolysis constants from 201 

Klungness and Byrne (2004) and from Smith & Martell (1976) showed that at these 202 
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concentrations, metal hydroxides do not precipitate out at the target pH values. However, 203 

controls (metal without biomass) showed that as much as 20% of each metal was potentially 204 

adsorbed to containers around pH 7. No adsorption to containers was observed at pH values 205 

below 5.5 but we often detected around 3% adsorption around pH 6, increasing to about 7% 206 

by pH 6.5.  We tested these observations using Teflon centrifuge tubes and measured similar 207 

adsorption. Thus our experiments were restricted to pH � 6.5, where speciation calculations 208 

showed that between 97% (Yb) and 99% (La) of the lanthanide was in the form of the 209 

hydrated trivalent ion and the rest as LnOH2+. Nevertheless, we are confident that the error 210 

introduced by this artefact on the experimental data is small given the stronger adsorption to 211 

cells, especially as initial addition of the lanthanide was done at low pH. Sampling involved 212 

pelleting (17,210 x g) the cells and filtering 10 ml of the supernatant into an acid-cleaned 213 

bottle. These solutions were acidified to 2% v/v HNO3 and stored at 4°C before metal 214 

analysis by ICP-MS using matrix-matched standards. The use of freeze-dried cells can affect 215 

total metal adsorbed, as demonstrated recently by Gabr et al. (2008). Thus, a further 216 

adsorption edge experiment was carried out to compare fresh and freeze-dried cells, using the 217 

element Nd, and similar biomass concentrations (0.21±0.01 g/L). 218 

 For the analysis, our sample solutions were diluted 1000 fold with 5% HNO3, and metal 219 

concentration was determined using a VG Elemental PlasmaQuad II+ Quadrupole mass 220 

spectrometer at the Scottish Universities Environmental Research Centre (SUERC). The 221 

metal concentration in the solution was obtained by reference to a calibration line produced 222 

by the analysis of standard solutions containing known concentrations of the element. Each 223 

sample value was corrected for procedural blank containing ultrapure water and 5% HNO3. 224 

Indium, Rhenium, and Ruthenium were selected as internal standards to monitor the 225 

condition of the VG PQII+ within each session. The accuracy of the procedure was measured 226 

by including an international environmental reference material BCR-1 (Govindaraju, 1984). 227 
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Although BCR-1 is not representative of the sample matrix, its light REE enrichment is ideal 228 

for assessing the stability of the ICP on the day of the analysis to minimise interferences and 229 

monitor changes during the analysis. Isotope peaks were determined in peak jumping mode 230 

with 3 points per peak using three 60s integrations. When available, multiple isotopes were 231 

selected for each element and the values averaged. Thus we used the following isotopes for 232 

each element: La (139La), Nd (145Nd and 146Nd), Sm (147Sm, 149Sm, and 152Sm), Gd (155Gd and 233 

157Gd), Er (166Er and 168Er) and Yb (172Yb, 173Yb and 174Yb). Isotopes free from interference 234 

(oxide or isobaric) were selected. Such care was necessary because some samples were 235 

analysed alongside solutions containing mixtures of lanthanides, results of which will be 236 

published elsewhere (Ngwenya et al., 2009).  As a precaution against high Ba blanks, we also 237 

routinely check for Ba oxide interference even during individual lanthanide analysis. The 238 

average value of 3 biomass free controls over the range pH 2-4 (to ensure no adsorption to 239 

containers walls) was used to determine the true starting concentration, which is given in 240 

Table 1. Precision of sample preparation was monitored by analysing 3 duplicate pH values 241 

and differences were smaller than 10%. 242 

 243 

2.3 Data Analysis 244 

Metal adsorption was calculated by mass balance from the difference between initial 245 

concentration and the amount in solution after equilibration. The resulting adsorption edges 246 

were modelled using the FITEQL 4 optimisation routine (Herbelin & Westall, 1999) to 247 

determine intrinsic metal-site stability constants, using the weighted sum of squares 248 

normalised by the number of degrees of freedom (WSOS/DF) to select the best-fitting model. 249 

Values between 0.1 and 20 are normally considered good fits (Herbelin and Westall, 1999). 250 

A constant capacitance electric field model with activity correction was used, with the same 251 

surface area (140m2/g), capacitance (8F/m2), deprotonation constants and surface site 252 
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densities as in Ngwenya et al (2003). Despite its limitations, the constant capacitance model 253 

was preferred over more recent, non-electrostatic approaches (e.g. Fein et al., 2005; Borrok et 254 

al., 2005) because of the high lanthanide valence (Marmier & Fromage, 1999), and because 255 

attempts with non-electrostatic models did not always produce consistent results between 256 

different lanthanide to biomass ratios. Acid-base equilibria for the electrolyte and water were 257 

included in the equilibrium problem, including lanthanide hydrolysis reactions whose 258 

stability constants were taken from Klungness and Byrne (2000). 259 

 260 

2.4  Samples and standards for X-Ray Absorption Spectroscopy 261 

Based on the fact that adsorption density of cations increases with pH and previous studies 262 

have shown that the coordination environment can vary depending on adsorption density (e.g. 263 

Kelly et al., 2002; Boyanov et al., 2003; Guiné et al., 2006), it was necessary to analyse 264 

biomass samples at low and high (circum-neutral) pH in order to examine speciation at low 265 

and high adsorption densities. Our experiments were focussed on four of the six lanthanides 266 

(Nd, Sm, Er and Yb), again chosen to represent light, middle and heavy lanthanides, and with 267 

biomass samples (0.2g/L and metal concentrations of 4 mg/L) adjusted to pH 3.5 and 6. After 268 

equilibration for 3 hours, the suspension was centrifuged at 23,420 x g for 20 minutes, 269 

followed by a quick rinse in pH-adjusted 0.01M NaClO4 electrolyte and further 270 

centrifugation to remove un-adsorbed metal. The resulting biomass paste was loaded onto 271 

slots in Al plates to a thickness of 1mm, covered with Kapton tape and stored at -80°C until 272 

analysis. For Sm and Yb, we also tested their coordination environment at a higher biomass 273 

(1g/L) with 10 mg/L initial metal concentration to examine if the coordination changed when 274 

each of the different surface sites were slightly in excess to probe possible site selectivity.  In 275 

order to validate our analysis methods reference solution standards of perchlorate, acetate, 276 
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citrate and glycerol-2-phosphate were analysed, and these gave broadly similar results to 277 

biomass samples in terms of bond distances.  278 

 279 
 280 
2.5 X-Ray Absorption Spectroscopy measurements and data analysis  281 

X-ray absorption spectra were collected in fluorescence mode on Stations 7.1 and 16.5 of the 282 

SRS, Daresbury Laboratory. Both beamlines were operating with sagittally focussing double 283 

crystal monochromators. Station 7.1 had a Si (111) set of crystals and a 9 element monolithic 284 

Ge solid state detector. Station 16.5 had a Si (220) set of crystals and a 30 element Ge 285 

detector. Data from the Nd and Sm (4 mg/L) samples were collected on station 7.1, whilst the 286 

Yb, Er and the rest of the Sm data was collected on station 16.5. All the spectra were of the 287 

L3 edge except for Er, where the L2 edge was used. The biomass samples were at 80K when 288 

the data was collected to minimise any possible beam damage. There was no noticeable 289 

difference in the XANES between the first and last scan of each biomass sample, showing 290 

that the samples were unaffected by any short-lived beam damage. Up to 32 scans were 291 

recorded and averaged for each biomass sample. The monochromator was calibrated using 292 

appropriate metal foils, Ti, Mn, Fe and Cu. 293 

 The spectra were reduced using the programs EXCALIB, EXBROOK and EXSPLINE 294 

(Ellis, 1995). The EXAFS was analysed in the program DL-EXCURVE (Tomic et al., 2005). 295 

Data were fitted using ab initio phaseshifts calculated using Hedin-Lundqvist exchange and 296 

Von Barth ground state potentials and single scattering using rapid curved wave theory. The 297 

E0, interatomic distances, number of atoms in each scattering shell (to the nearest integer) and 298 

associated Debye-Waller factors (a measure of the static and thermal disorder in the distance) 299 

data were minimised using the fit index R, defined as follows: 300 

R =Σi[(1/(σi))(|experiment(i)-theory(i)| ] .100%    (1) 301 

where: 302 
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1/(σi) = [k(i)]3/(Σi[k(i)]3 |experiment(i)|)      (2) 303 

 304 
In each case ab initio modelling of the data began with fitting the first coordination sphere 305 

with oxygen and then attempts were made to fit further coordination shells of either 306 

phosphorus or carbon. The fits for carbon and phosphorus were compared. Further to this a fit 307 

was attempted using a second coordination sphere of both carbon and phosphorus. In order to 308 

reduce the number of refined variables in modelling the second coordination sphere, initially 309 

the shell occupancy number was fixed at half the value of the shell occupancy number for the 310 

oxygen shell; once a bonding mode had been established this number was refined to the 311 

nearest half integral value. The second sphere data is only considered valid where a 10% 312 

improvement in the fit index is seen on addition of this shell. In differentiating between C and 313 

P in this second sphere, we believe where the C or P model has  a 5 % lower fit index than 314 

the other, this model is definitely the preferred one according to the EXAFS, and is 315 

consequently the model shown in the results table. The data quality and number of free 316 

parameters mean that a model with a mixed second coordination sphere of C and P is not 317 

justified statistically, though the EXAFS cannot rule out a  component of carbonate or 318 

phosphate  bonding being present in samples where the other is the dominant mode. 319 

 320 
3 Results and Discussion 321 

 322 
3.1  Kinetics, reversibility and biomass preparation 323 

 Our time course experiments, conducted using Gd at pH around 4, showed that lanthanide 324 

adsorption to the biomass was rapid, with approximately 99% of the 4 mg/L Gd adsorbed 325 

within 5 minutes of contact. As shown in Figure 1a, however, the pH of the suspension rose 326 

gradually during the first 100 minutes or so and only attained constancy thereafter. It was for 327 

this reason that we chose (a) an equilibration time of 3 hours for our adsorption edge 328 

experiments and (b) present our adsorption edge data as a function of final pH below.  329 
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 Figure 1b shows that after this 3-hour equilibration, the adsorption reaction is also 330 

completely reversible, as exemplified by the adsorption of 4 mg/L Er. Although individual 331 

suspensions equilibrate to slightly differing final pH values, the two curves overlie each 332 

other, clearly demonstrating equilibrium thermodynamic attainment. Figure 1c shows further 333 

that by combining this data with that obtained on a different, independent suspension yields 334 

excellent reproducibility. 335 

 Finally, a recent study by Gabr et al (2008) has shown that the amount of Pb and Ni 336 

adsorbed by a strain of Pseudomonas aeruginosa was slightly higher when freeze-dried cells 337 

were used instead of freshly prepared cells. We tested this with our Pantoea agglomerans 338 

strain using 2 mg/L Nd and found no differences in adsorption density between fresh and 339 

freeze-dried cells (Fig. 1d), both in terms of adsorption edges and modelled stability 340 

constants. 341 

 342 

3.2 Macroscopic adsorption and surface complexation modelling 343 

Macroscopic adsorption experiments were designed to provide information on what type 344 

of sites are involved in lanthanide uptake under the limited range of acidic pH conditions 345 

tested. The experiments were focussed on pH-dependent adsorption because it has been 346 

established that such experiments provide ideal data to quantify the stability constants 347 

between each metal and the sites involved, although adsorption isotherm experiments are also 348 

useful confirmatory tools. Results from these experiments are shown in Figure 2, where the 349 

percentage of metal adsorbed is plotted against final suspension pH, and curves represent 350 

different model fits to the data. In all cases, the amount of lanthanide adsorbed increases with 351 

increasing pH, consistent with the expected behaviour for cationic adsorbents.  352 

Considering that kinetic and reversibility experiments indicated attainment of equilibrium, 353 

mass balance constraints on the total concentration of each metal should show an increase in 354 



 14 

percent lanthanide adsorbed with decreasing initial metal (4 mg/L to 2 mg/L) to biomass 355 

ratio. This behaviour is clearly evident in the Sm and Yb adsorption edges. In contrast, the La 356 

and Nd edges are practically identical. We found that the biomass concentration in the 2 357 

mg/L La experiment was much lower than the nominal 0.2 g/L, being about 0.12 g (due to 358 

losses during washing), resulting in a higher metal to biomass ratio for this suspension. 359 

Equally, the measured starting biomass concentration for 4mg/L Nd was 0.25 g/L explaining 360 

the higher percentage adsorption in this experiment. To illustrate this further, we calculated 361 

relative metal to biomass concentrations between the 4 mg/L and the 2 mg/L suspensions in 362 

our study, by dividing the lanthanide to biomass ratio for the 4 mg/L experiment by the 363 

corresponding ratio in the 2 mg/L experiment. This revealed that by using similar mg/L 364 

instead of equimolar concentrations, the relative metal to biomass ratio increased with 365 

increasing atomic number.  What emerges from this inadvertent approach is that relative 366 

ratios below about 1.5 are not able to resolve the two adsorption edges, being within the error 367 

scatter of the data.  368 

Similarly, comparison amongst the elements using adsorption at 50% does not show 369 

systematic variation with atomic number. For the 4 mg/L suspensions, where the biomass 370 

concentrations are closer to each other, we find that 50% adsorption occurs above pH 4 for 371 

both La and Nd and below pH 4 for Sm, Gd, Er and Yb, suggesting that middle and heavy 372 

lanthanides sorb more strongly to the biomass. Surface complexation modelling is therefore 373 

critical to confirm that the mass balance constraints on biomass are applicable, as well as to 374 

confirm the relative adsorptive strength of the 6 elements.  375 

Modelling was set with the following generic reaction stoichiometry: 376 

( )( )+++− ⇔+
231 n

n
n
n LnROHLnROH         (3) 377 
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where ROHn represents a protonated surface functional group, Ln
3+ is the lanthanide cation 378 

and n represents the number of protons attached to the surface functional group. For the 379 

constant capacitance electrostatic model, we define an intrinsic stability constant (Kint.), thus: 380 

( )[ ]
[ ][ ]

( )( )( )2/
31

)2(

int
+

+−

+

= nRTF

n
n

n
n

e

LnROH

LnROH
K

ψψψψ       (4) 381 

where F is the Faraday constant, ψ is the potential at the cell surface, R is the universal gas 382 

constant and T is temperature. The following stoichiometries were tested: 383 

( ) ++ ⇔+ 33
ROHLnLnROH ,  n=1.        (5) 384 

( ) ++− ⇔+ 23
ROLnLnRO ,   n = 0.        (6) 385 

Reactions 5 and 6 are essentially regarded as representing outer-sphere and inner-sphere 386 

complexation respectively (Langmuir, 1997). Deprotonation constants and site densities 387 

determined from acid-base titrations by Ngwenya et al (2003) were used as input in metal 388 

adsorption models. Other thermodynamic parameters were obtained from Smith & Martell, 389 

(1976) and from Klungness & Byrne (2000). The WSOS/DF calculated by FITEQL was used 390 

to select the best-fitting model, in conjunction with visual adherence of the model curves to 391 

the experimental data. Reaction (5) was tested, either alone or in combination with reaction 392 

(6), because of previous findings suggesting the involvement of neutral surface sites for high 393 

valance cations such as UO2
2+ (Fowle et al., 2000, Haas et al., 2001). However, both 394 

approaches invariably resulted in much higher WSOS/DF values. Other stoichiometries (e.g. 395 

bidentate) were tested with similar negative outcomes. Thus, the modelling results collated in 396 

Table 2 represent best-fitting stability constants based on reaction (6). 397 

 For La, lower WSOS/DF values were associated with deprotonation constants tentatively 398 

ascribed to phosphate sites at both metal to biomass ratios. The difference in WSOS/DF 399 

values between adsorption to carboxyl and phosphate sites is higher for the 4 mg/L dataset 400 

than the 2 mg/L dataset, where these values are practically indistinguishable. Nevertheless, a 401 
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forward modelling of the adsorption isotherm using the mean pK values shows clearly that 402 

both datasets are optimally fit with the phosphate surface complex (Fig. 2a), although 403 

carboxyl complexation appears to be equally reasonable at low pH. Attempts to reproduce the 404 

adsorption data with a forward model involving simultaneous adsorption to carboxyl and 405 

phosphate sites overestimated the adsorption density across the whole range of pH. 406 

 Modelling of the Nd data was consistent between the two metal/biomass ratios in yielding 407 

a lower WSOS/DF value for carboxyl adsorption. However, the WSOS/DF value for 408 

carboxyl complexation in the 2 mg/L dataset was well below the acceptable value of 0.1, 409 

apparently suggesting that the model contains too many adjustable parameters or that the 410 

error estimates are too large (Herbelin & Westall, 1999). By comparison, the WSOS/DF 411 

value for phosphate adsorption was more reasonable at 0.32. As can be seen in Figure 2b, 412 

mean phosphate complexation constants perform marginally better in predicting the measured 413 

adsorption edges, particularly at the lower pH end. Interestingly, Fein et al (2001) calculated 414 

a Log K of 5.1±0.2 for monodentate Nd adsorption to carboxyl sites on Bacillus subtilis. Our 415 

Nd value of 5.06±0.1 is therefore practically identical to their value. No comparison can be 416 

made for phosphate complexation as Fein et al (2001) did not report a stability constant for 417 

this reaction.  418 

 Sm models yielded lower WSOS/DF values whenever carboxyl surface parameters were 419 

used. However, differences in WSOS/DF values were very small and the phosphate model 420 

parameters were just as tightly constrained.  As shown in Figure 2c, mean carboxyl and 421 

phosphate stability constants provide reasonable reproduction of the adsorption edges. Subtle 422 

differences are evident at low pH where carboxyl models perform better but the phosphate 423 

site performs marginally better at pH values above 4.5. The single metal to biomass data that 424 

we have for Gd suggests adsorption to phosphate sites performs slightly better (Fig. 2d). 425 
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 Carboxyl models appear to provide better fits to all the 4ppm Er data than phosphate 426 

models (Fig. 2e). Similarly, lower WSOS/DF values were associated with Yb adsorption to 427 

carboxyl sites for both the 2 mg/L and 4 mg/L data (Fig. 2f).  This is also reflected in the 428 

slightly better fit to the adsorption data using carboxyl models, although the phosphate site 429 

predicts the data slightly better at low pH in the 2 mg/L data. 430 

  In summary, it appears that lanthanide adsorption edges below pH 6.5 are consistent with 431 

adsorption to phosphate groups for both of the light lanthanides examined in this study. By 432 

contrast, the two middle lanthanides (Sm and Gd) are not consistent, with Sm apparently 433 

preferring carboxyl sites whereas Gd is best fit with phosphate sites, although the Gd 434 

adsorption is less well constrained based on one metal to biomass dataset. In contrast, both of 435 

the heavy lanthanides are best fit with carboxyl adsorption, although phosphate fits to the 436 

data are also generally good. The phosphate predictions are indistinguishable from carboxyl 437 

predictions within the error bounds found in most experiments of metal adsorption to bacteria 438 

where biomass and/or metal concentration is varied (Fein et al., 1997; Daughney et al., 2001; 439 

Haas et al., 2001; Martinez & Ferris., 2001; Ngwenya et al., 2003; Châtellier & Fortin, 2004; 440 

Yee et al., 2004; Borrok et al., 2005; Toner et al., 2005; Pokrovsky et al., 2005; Gélabert et 441 

al., 2006; Burnett et al., 2006). We conclude that surface complexation modelling of the 442 

macroscopic adsorption data either points to the involvement of both sites or that it is simply 443 

not able to reveal selectivity in surface speciation. One possible reason for this is that in all 444 

our experiments, the concentration of each site in the suspension is in excess of the initial 445 

total lanthanide concentration. Equally, the pH range of the data may be too narrow to resolve 446 

between the different possible surface complexes. However, the measured adsorption does 447 

not change above pH 6.5 so data beyond this pH does not yield additional information. 448 

Attempts to use higher initial lanthanide concentrations (15ppm) were not useful as there was 449 

some evidence of surface precipitation above pH 5 (data not shown). 450 
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 451 

3.3 Lanthanide coordination from EXAFS measurements 452 

 Attempts were made to obtain X-ray absorption spectra for Nd, Sm Yb and Er samples 453 

with 4 mg/L initial metal concentration for both pH’s (3.5 and 6). However, in the case of 454 

Nd, the concentration of adsorbed metal in the pH 3.5 sample was not sufficient to give 455 

analysable data. Data was collected out to 12 k (Å-1), but in most cases could only be 456 

analysed to ca.10  k as beyond this point the signal-to-noise ratio is poor. This accounts for 457 

the different data ranges in Figures 3 and 4. . In one Sm sample and Yb sample the analysis is 458 

restricted to about 8 k because of Fe contamination in the cryosystem (Sm), and low data 459 

quality for the Yb sample.  The EXAFS analysis results are shown in Table 3.   460 

 In a previous study of Nd co-ordinated to alfalfa biomass, Parsons et al (2005) showed two 461 

Nd-O first coordination sphere distances of around 2.38 and 2.56 Å. They attributed these to 462 

water bound O (2.38Å) and surface bound O (2.56Å). Acetate or similar carboxylate groups 463 

displayed an Nd-C distance of about 3.6 Å. In our modelling, attempts to split the oxygen 464 

coordination shell led to very high correlations between the distances and Debye-Waller 465 

factors, thus the shell has been left unsplit. At 3.92 Å, the Nd(-O-)P distance is too long for 466 

bidentate phosphate coordination, but reasonable for monodentate phosphate bonding. This is 467 

because in Nd-Monazite (NdPO4), the Nd-P distances are 3.15 and 3.25 Å for bidentate 468 

phosphate and 3.47 and 3.73 Å for monodentate phosphate, with the Nd –O distances ranging 469 

between 2.42 and 2.79 Å, with a mean of 2.52 Å (Ni et al, 1995). Our distance of 3.92 Å for 470 

Nd-P is similar to that found in ultraphosphate and metaphosphate glasses (3.87 Å) by 471 

Karabulut et al (2005). No Nd-C coordination was evident in the pH6, 4ppm biomass data. 472 

 We saw the most significant pH-dependant changes in the EXAFS for Samarium (Figure 473 

3). At low pH (3.5) there are indications of monodentate phosphate binding at 3.86 Å, 474 

comparable to the monodentate Sm-O-P of 3.63 -3.78 Å in KSmHP3O10 (Zouari et al., 2000). 475 
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The pH 6 sample shows carbon in the second coordination sphere. In the 10 mg/L sample this 476 

shell is quite distinct at 3.48 Å, similar to a monodentate Sm(-O-)C of  3.47 Å in Samarium 477 

Carbonate Hydroxide (Xu et al., 2006). In the 4 mg/L pH 6 sample the carbon shell does 478 

not fit the Fourier Transform well (Figure 3), though it improves the EXAFS fit. The 479 

amplitude of this oscillation is also quite low compared to the other Sm second shell EXAFS 480 

(Figure 3).  Further the Sm-C distance is quite different and a little longer than expected (3.64 481 

Å), thus this may be indicative of  mixed speciation in this sample, where more than one 482 

bonding mode exists in substantial fraction and thus the bare two shell fit is unrepresentative 483 

- the EXAFS being washed out by destructive interference. Thus we believe the binding 484 

mode may actually be a mixture of phosphate and carboxyl in this sample. It seems therefore 485 

that when the biomass to Sm ratio is increased (1g/L, 10ppm) the carboxyl mode 486 

predominates. These observations are entirely consistent and may suggest carboxyl site 487 

preference by Sm.  488 

 For the higher lanthanides, Er and Yb, the EXAFS results (Figure 4) are similar with both 489 

showing P in the second shell at distances 3.81-3.83 Å (Er) and 3.75-3.80 Å (Yb) similar to 490 

monodentate phosphate bonding  (Er –O-P 3.75 Å, Yb- O –P 3.72 Å  in LnPO4 (Milligan and 491 

Mullica, 1983) . This distance would need to be ca. 0.4 Å less for bidentate coordination. No 492 

C in the second coordination sphere could be fitted convincingly for any of these datasets, 493 

however examination of the individual shell EXAFS contributions (Figure 4) and Fourier 494 

transforms (Figure 4) reveals again that for the pH 6 samples the P shell amplitude is smaller, 495 

and also the shell occupancy numbers for the Yb pH 6 P shells are lower than for the pH 3.5 496 

samples. These related observations are both indicative that, in the higher pH bonding, 497 

monodentate phosphate coordination may not be the whole story; however, our analysis of 498 

the EXAFS data for the Er and Yb does not allow us to say whether this is due to some 499 

carboxyl bonding or other coordination mode.  500 
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 In the EXAFS the lanthanide contraction is noticeable with the Ln – O distance gradually 501 

decreasing from 2.48 – 2.45 – 2.33 – 2.28 from Nd to Sm to Er to Yb. Also the Er appears to 502 

have slightly fewer oxygen atoms around it than the other lanthanides. The coordination 503 

number of oxygen atoms in the first shell is similar for all the atoms, refining to values 504 

between 7.5 and 10.5. 505 

 Our spectroscopic findings are consistent with other EXAFS studies in two respects. 506 

Firstly, they show the predominance of phosphate binding at low pH, as previously reported 507 

for uranyl and Cd adsorption to Bacillus subtilis by Kelly et al (2002) and Boyanov et al. 508 

(2003) respectively. Secondly, they show that as the pH increases at a constant biomass 509 

concentration, the carboxyl group starts to get involved in lanthanide bonding. Thus, in 510 

summary the EXAFS analysis is strongly indicative of monodentate phosphate coordination 511 

at low pH for the 4 lanthanides studied by XAFS here, whereas at higher pH, phosphate 512 

coordination dominates for Nd, Er and Yb, whereas carboxyl coordination dominates for Sm. 513 

However the data indicates that for the heavy lanthanides, there may well be more than one 514 

bonding mode present. 515 

 516 

3.4 General synthesis 517 

This study combined surface complexation modelling of macroscopic adsorption data with 518 

X-ray spectroscopic measurements to identify lanthanide sorption sites on the bacterial 519 

surface. The experiments were limited to the acidic region of the pH spectrum because nearly 520 

100% adsorption was attained above pH 5 for the range of metal to biomass ratios used. As a 521 

result, surface complexation modelling was focussed on sites that deprotonate in this pH 522 

range, and suggested that there may be variations in the dominant sorption sites across the 523 

lanthanide series. Specifically, the adsorption of both of the light lanthanides was best 524 

modelled assuming adsorption to phosphate sites. However, the rest of the lanthanides could 525 
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be modelled equally well with carboxyl or phosphate sites, although Samarium was better 526 

modelled with carboxyl relative to phosphate sites. Nevertheless, the differences in 527 

performance between the two models were generally small, suggesting that surface 528 

complexation modelling does not adequately discriminate between the two models. Lastly, 529 

we found that for all the lanthanides, inner-sphere (proton exchange) complexation was the 530 

most likely reaction stoichiometry, although this needs to be confirmed by conducting ionic 531 

strength-dependent metal adsorption experiments. By comparison, X-ray spectroscopic 532 

analyses are more consistent with adsorption of most lanthanides to phosphate sites, at least 533 

at low adsorption densities (at low pH), with secondary involvement of carboxyl sites at high 534 

adsorption density (high pH). Furthermore, spectroscopic analysis suggests that the 535 

coordination to phosphate sites is monodentate. Some indication of carboxyl dominance was 536 

inferred for Sm in the high biomass sample. 537 

 Thus, the first conclusion that arises from this study is that surface complexation 538 

modelling and spectroscopic analysis are broadly consistent in their information content with 539 

regard to surface site identity and lanthanide coordination environment. Coordination of light 540 

lanthanides to phosphate groups, as implied by both techniques, is consistent with the 541 

findings of Merroun et al (2003) for La adsorption to M. xanthus. Such a model was also 542 

suggested by Takahashi et al (2005) for all lanthanides adsorbed onto B. subtilis, although 543 

their experiments were conducted only at low pH values, where recent spectroscopic studies 544 

(Kelly et al., 2002; Boyanov et al., 2003) seem to indicate that metal coordination to 545 

phosphate site is a common phenomenon. These studies have also indicated that with 546 

increasing pH, carboxyl sites become more involved in the adsorption reaction, because 547 

carboxyl sites start to deprotonate (Fowle et al., 2000; Kelly et al., 2002). Although we do not 548 

report Eu adsorption in this study, the pH-dependent behaviour contrasts with the findings of 549 

Markai et al (2003), that low pH adsorption of Eu was due to carboxyl complexation, based 550 
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on time resolved laser-induced fluorescence spectroscopy (TRLFS) measurements, with 551 

phosphate groups only coming into play at high pH and/or adsorption density. Notably, the 552 

coordination environment of lanthanides has also been found to vary between bacterial 553 

species (Ozaki et al., 2005). Thus it is not possible categorically to generalise our 554 

observations, indicating that further work is required to develop a better understanding of the 555 

lanthanide coordination environment in biological materials. More importantly, our study 556 

demonstrates clearly that neither technique is capable of providing unambiguous coordination 557 

information for lanthanide adsorption. This clearly justifies the use of complimentary 558 

techniques in metal adsorption studies. 559 

  Finally, we note that the best fitting model for adsorption to phosphate sites is 560 

consistent with inner-sphere (reaction 6) complexation, with adsorption to undeprotonated 561 

phosphate sites (reaction 5) yielding WSOS/DF values around 50, and is therefore unlike the 562 

coordination environment of the uranyl ion (Fowle et al., 2000; Kelly et al., 2002). Within the 563 

gram-negative cell wall, the only structural components containing phosphate groups in the 564 

outer membrane are phospholipids and N-acetylglucosamine phosphate, a component of 565 

Lipid A in the lipopolysaccharide membrane (Beveridge & Fyfe, 1985; Madigan et al., 2003; 566 

Guiné et al., 2006). As shown in Figure 5, both molecules contain phosphoester bonds, with a 567 

monophosphoester bond in N-acetylglucosamine-6-phosphate (Nishitani et al., 2006), and a 568 

phosphodiester bond in phospholipids, typified here by phosphatidylethanolamine (Mayes, 569 

1985).  570 

 Experimental studies of protonation reactions for phosphodiesters in aqueous solutions are 571 

consistent with a pKa of about -0.7 for the single hydroxylated functional group (Azema et 572 

al., 2005). Thus, this functional group is likely to be deprotonated both at physiological 573 

conditions and across our experimental pH spectrum. As such, it may be responsible for the 574 

observed low pH adsorption of the light lanthanides in this study, and could also explain the 575 
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apparent pH-independent adsorption of uranyl ions reported by Fowle et al (2000) at low pH. 576 

However, our model outcomes were realised with a pKa of 6.9 for phosphate groups 577 

(Ngwenya et al., 2003), which is closer to the deprotonation constant for the second hydroxyl 578 

group on phosphoric acid, (pKa ~7). Attempts to model the data with a non-electrostatic 579 

model, which yielded a phosphodiester pKa around 3.9 (based on 4 variable biomass 580 

titrations) for Pantoea agglomerans, did not produce consistent results across different metal 581 

to biomass ratios and the resulting WSOS/DF values were always higher. This leads us to 582 

speculate that the second hydroxyl group on N-acetylglucosamine phosphate makes this a 583 

more likely candidate for lanthanide binding on a gram-negative bacterium. It may be 584 

considered analogous to methylphosphoric acid, which has a second pKa around 6.3 (Saha et 585 

al., 1996). Such a conjecture need not conflict with phosphate binding of cations on gram-586 

positive cell walls, where phosphate groups are dominated by phosphodiester linkages in 587 

teichoic acids (Heinrich et al., 2007), because gram-positive cell walls also contain other 588 

phosphate groups in addition to phosphodiester linkages. 589 

 590 

4 Conclusions 591 

The objective of this study was to combine surface complexation modelling of macroscopic 592 

adsorption data with X-ray spectroscopic measurements to identify lanthanide sorption sites 593 

on the bacterial surface. We have shown that surface complexation modelling and 594 

spectroscopic analysis yield complimentary information on the coordination environment of 595 

the light lanthanides. Surface complexation modelling was consistent with the light 596 

lanthanides adsorbing to phosphate sites, whereas the adsorption of middle and heavy 597 

lanthanides could be modelled equally well by carboxyl and phosphate sites. Moreover, 598 

proton exchange is the most likely reaction stoichiometry. The existence of such mixed mode 599 

coordination was also confirmed by EXAFS analyses, which was consistent with adsorption 600 



 24 

to phosphate sites at low pH, with secondary involvement of carboxyl sites at high pH. 601 

Importantly, however, neither surface complexation modelling nor EXAFS analysis gave the 602 

whole picture alone, emphasising the importance of using complimentary techniques in 603 

understanding sorption mechanisms. Apparently, coordination to phosphate sites is 604 

monodentate, and occurs to phosphate sites around pKa ~7. Based on these observations, we 605 

conjecture that the phosphate sites are located on N-acetylglucosamine phosphate, the most 606 

likely polymer with potential phosphate sites that deprotonate around neutral pH. 607 
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Figure Captions 820 
 821 
Figure 1. Graphs showing (a) adsorption of Gd and suspension pH as a function of time, (b) 822 

adsorption reversibility as exemplified by Er, (c) reproducibility of 3 suspensions of 823 

~0.2g/L biomass and 4 mg/L Er, and (d) comparison of fresh (FS) and freeze-dried (FZ) 824 

cells of the same dry biomass concentration, showing that the use of freeze-dried does not 825 

have an effect on the Nd adsorption edge. Note also that equilibration of pH and 826 

adsorption occurs after 100 minutes or so. 827 

 828 
Figure 2. Experimental adsorption data (symbols) and FITEQL model fits (curves) for the 829 

adsorption of different lanthanides to Pantoea agglomerans cells. Model curves represent 830 

adsorption to carboxyl (dotted line) and phosphate (solid line) sites respectively. Thus the 831 

legend label “La2P” refers to a model curve predicted for the adsorption of 2mg/l 832 

lanthanum assuming adsorption to a phosphate site whereas “La2C” refers to the same 833 

model assuming adsorption to a carboxyl site etc. 834 

 835 

Figure 3: k3-weighted EXAFS, each shell's contribution to the EXAFS fit (shell 1 is above 836 

shell 2 for each sample), and phase shifted Fourier transforms for (a) pH 6 4 mg/l Nd 837 

sample, (b) pH6 10 mg/l Sm, (c) pH6 4 mg/l Sm and (d) pH 3.5 4 mg/l Sm samples. 838 

Spectra have been offset for clarity. Experimental data is solid line and fit is dotted line. 839 

 840 

Figure 4. k3-weighted EXAFS, each shell's contribution to the EXAFS fit (shell 1 is above 841 

shell 2 for each sample), and phase shifted Fourier transforms for (a) pH3.5, 4 mg/l Yb, 842 

(b) pH3.5, 10 mg/l Yb (c) pH6 4 mg/l Yb and (d) pH6, 10 mg/l Yb samples, as well as (e) 843 

pH3.5 4 mg/l Er and (f) pH 6 4 mg/l Er. Spectra have been offset for clarity. Experimental 844 

514 data is solid line and fit is dotted line. 845 

 846 



 35 

 847 
Figure 5. Molecular structures of N-acetylglucosamine-6-phosphate (redrawn from Nishitani 848 

et al., 2006) and phosphatidylethanolamine (redrawn from Mayes, 1985), showing 849 

possible phosphate groups that may be involved in lanthanide coordination on a gram-850 

negative bacterial cell surface. In practice, the cell surface composition is likely more 851 

complex but the deprotonation constants for the different protons attached to the 852 

phosphate group appear to have a relatively narrow range. 853 
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 854 
Table Captions. 855 

 856 
Table 1. Compilation of experiments reported in this study, summarising the initial biomass 857 

and lanthanide concentrations. Column 6 represents the relative metal to biomass ratio 858 

between the 4 mg/L and the 2 mg/L suspensions, calculated by dividing the lanthanide to 859 

biomass ratio for the 4 mg/L experiment by the corresponding ratio in the 2 mg/L 860 

experiment. 861 

 862 

Table 2. Results from FITEQL optimisation of stability constants for the adsorption of the 863 

studied lanthanides, with errors on the mean representing one times the standard deviation. 864 

Models were realised using bacterial deprotonation constants and surface site densities 865 

determined by Ngwenya et al (2003). For carboxyl sites, the values are pKa = 4.3±0.2 and 866 

site density = 5.0±0.7 mol/g cells, whereas the corresponding values for phosphate sites 867 

are pKa= 6.9±0.5 and site density = 2.2±0.6 mol/g cells. The abbreviations “La2” 868 

represent an experiment using 2 mg/L lanthanum, etc whereas ErUP and ErDN refer to 869 

reversibility experiments in which the pH of the initial suspension was adjusted upwards 870 

or downwards respectively. 871 

 872 

Table 3. EXAFS analysis results for the lanthanide L3 edge collected in Fluorescence mode.873 
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Table 1.  874 
 875 
Element Experiment Biomass 

(g/L) 
Log 

Molarity 
Initial 
[Ln3+] 

Lanthanide/Biomass 
(mol/g) x 10-4 

La4/ La2 
metal/biomass 

ratio 

Lanthanum La2 0.125 -4.83 1.18  
 La4 0.2 -4.53 1.48 1.25 
Neodymium Nd2 0.19 -4.84 0.80  
 Nd4 0.25 -4.57 0.92 1.15 
Samarium Sm2 0.255 -4.86 0.54  
 Sm4 0.18 -4.63 1.30 2.41 
Erbium Er4 0.18 -4.57 1.51  
 Er4UP 0.21 -4.64 1.09  
 ER4DN 0.21 -4.64 1.09  
Ytterbium Yb2 0.25 -4.92 0.48  
 Yb4 0.16 -4.67 1.34 2.79 
 876 
 877 

Table 2.  878 
 879 
Element Experiment R-COO-Ln2+ R-PO4-Ln2+ 
  Log K WSOS/DF Log K WSOS/DF 
Lanthanum La2 4.86 0.39 8.14 0.24 
 La4 4.87 5.56 8.12 2.04 
Mean ±1sd  4.86 ± 0.01  8.13 ± 0.01  
      
Neodymium Nd2 5.34 0.03 8.53 0.32 
 Nd4 4.78 1.24 8.46 0.45 
Mean ±1sd  5.06±0.40  8.50±0.05  
      
Samarium Sm2 5.15 0.16 8.37 0.51 
 Sm4 5.10 0.77 8.33 1.58 
Mean ±1sd  5.13 ± 0.03  8.35 ± 0.03  
      
Gadolinium Gd4 5.14 0.80 8.40 0.70 
      
Erbium Er4 5.44 2.08 8.67 3.80 
 Er4UP 5.21 0.46 8.43 0.15 
 Er4DN 5.22 0.40 8.45 0.60 
Mean ±1sd  5.29 ± 0.13  8.52 ± 0.13  
      
Ytterbium Yb2 5.49 0.10 8.66 0.13 
 Yb4 5.17 0.52 8.34 0.69 
Mean ±1sd  5.33 ± 0.23  8.50 ± 0.23  
 880 
 881 
 882 
 883 



 38 

Table 3.  884 
 885 
 886 

Sample  

 

CN
 a

 Atom Type Shell Radius
b
 (

Å) 

Debye-Waller 

factor (Å) 
-2

 

R Factor 

Nd pH6, 4 mg/L 10.5 

4 

O 

P 

2.48 

3.92 

0.024 

0.024 

27.3 

Sm pH 3.5, 4 mg/L 8 

4 

O 

P 

2.43 

3.85 

0.013 

0.016 

32.7 

Sm pH 6, 4 mg/L  8 

5 

O 

C 

2.46 

3.64 

0.013 

0.030 

31.8 

Sm pH 6, 10 mg/L  10 

6 

O 

C 

2.45 

3.48 

0.025 

0.004 

34.6 

Er pH 3.5, 4 mg/L 7.5 

3 

O 

P 

2.39 

3.81 

0.022 

0.035 

38.7 

Er pH 6, 4 mg/L 9 

5 

O 

P 

2.38 

3.83 

0.018 

0.040 

16.2 

Yb pH 3.5, 4 mg/L 10 

4 

O 

P 

2.27 

3.80 

0.030 

0.016 

31.8 

Yb pH 3.5, 10 mg/L 9 

4.5 

O 

P 

2.26 

3.74 

0.028 

0.021 

26.5 

Yb pH 6, 4 mg/L 10 

2 

O 

P 

2.30 

3.77 

0.028 

0.016 

27.4 

Yb pH 6, 10 mg/L 8 

4 

O 

P 

2.27 

3.75 

0.014 

0.033 

33.5 

 887 
(a): ±15%; (b) ± 0.5 % 888 
 889 
 890 
 891 
 892 
 893 
 894 
 895 
 896 
 897 
 898 
 899 
 900 
 901 
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Figures 902 
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 906 

Figure 1, Ngwenya et al 907 
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