28 research outputs found

    Multinomial Processing Models in Visual Cognitive Effort Diagnostics

    Get PDF
    The pupillary response has been used to measure mental workload because of its sensitivity to stimuli and high resolution. The goal of this study was to diagnose the cognitive effort involved with a task that was presented visually. A multinomial processing tree (MPT) was used as an analytical tool in order to disentangle and predict separate cognitive processes, with the resulting output being a change in pupil diameter. This model was fitted to previous test data related to the pupillary response when presented a mental multiplication task. An MPT model describes observed response frequencies from a set of response categories. The parameter values of an MPT model are the probabilities of moving from latent state to the next. An EM algorithm was used to estimate the parameter values based on the response frequency of each category. This results in a parsimonious, causal model that facilitates in the understanding the pupillary response to cognitive load. This model eventually could be instrumental in bridging the gap between human vision and computer vision

    Missing OH reactivity in the global marine boundary layer

    Get PDF
    The hydroxyl radical (OH) reacts with thousands of chemical species in the atmosphere, initiating their removal and the chemical reaction sequences that produce ozone, secondary aerosols, and gas-phase acids. OH reactivity, which is the inverse of OH lifetime, influences the OH abundance and the ability of OH to cleanse the atmosphere. The NASA Atmospheric Tomography (ATom) campaign used instruments on the NASA DC-8 aircraft to measure OH reactivity and more than 100 trace chemical species. ATom presented a unique opportunity to test the completeness of the OH reactivity calculated from the chemical species measurements by comparing it to the measured OH reactivity over two oceans across four seasons. Although the calculated OH reactivity was below the limit of detection for the ATom instrument used to measure OH reactivity throughout much of the free troposphere, the instrument was able to measure the OH reactivity in and just above the marine boundary layer. The mean measured value of OH reactivity in the marine boundary layer across all latitudes and all ATom deployments was 1.9 s⁻¹, which is 0.5 s⁻¹ larger than the mean calculated OH reactivity. The missing OH reactivity, the difference between the measured and calculated OH reactivity, varied between 0 and 3.5 s⁻¹, with the highest values over the Northern Hemisphere Pacific Ocean. Correlations of missing OH reactivity with formaldehyde, dimethyl sulfide, butanal, and sea surface temperature suggest the presence of unmeasured or unknown volatile organic compounds or oxygenated volatile organic compounds associated with ocean emissions

    A Highly Conserved Interaction Involving the Middle Residue of the SXN Active-Site Motif Is Crucial for Function of Class B Penicillin-Binding Proteins: Mutational and Computational Analysis of PBP 2 from N. gonorrhoeae

    No full text
    Insertion of an aspartate residue at position 345a in penicillin-binding protein 2 (PBP 2), which lowers the rate of penicillin acylation by ~6-fold, is commonly observed in penicillin-resistant strains of Neisseria gonorrhoeae. Here, we show that insertions of other amino acids also lower the penicillin acylation rate of PBP 2, but none supported growth of N. gonorrhoeae, indicating loss of essential transpeptidase activity. The Asp345a mutation likely acts by altering the interaction between its adjacent residue, Asp346, in the β2a-β2d hairpin loop and Ser363, the middle residue of the SXN active site motif. Because the adjacent aspartate creates ambiguity in the position of the insertion, we also examined if insertions at position 346a could confer decreased susceptibility to penicillin. However, only aspartate insertions were identified, indicating that only an Asp-Asp couple can confer resistance and retain transpeptidase function. The importance of the Asp346-Ser363 interaction was assessed by mutation of each residue to Ala. Although both mutants lowered the acylation rate of penicillin G by 5-fold, neither could support growth of N. gonorrhoeae, again indicating loss of transpeptidase function. Interaction between a residue in the equivalent of the β2a-β2d hairpin loop and the middle residue of the SXN motif is observed in crystal structures of other Class B PBPs and its importance is also supported by multi-sequence alignments. Overall, these results suggest that this conserved interaction can be manipulated (e.g. by insertion) to lower the acylation rate by β-lactam antibiotics and increase resistance, but only if essential transpeptidase activity is preserved

    The NASA Airborne Tropical Tropopause Experiment: High-Altitude Aircraft Measurements in the Tropical Western Pacific

    No full text
    Abstract The February–March 2014 deployment of the National Aeronautics and Space Administration (NASA) Airborne Tropical Tropopause Experiment (ATTREX) provided unique in situ measurements in the western Pacific tropical tropopause layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the Convective Transport of Active Species in the Tropics (CONTRAST) and the Coordinated Airborne Studies in the Tropics (CAST) airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes, as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data are publicly available online (at https://espoarchive.nasa.gov/)
    corecore