27 research outputs found

    The evolution and genetic control of stress tolerance in a complex world

    Get PDF
    Doctor of PhilosophyDepartment of BiologyTheodore J. MorganNatural populations are highly complex and consist of genetically variable individuals that belong to continuously varying age classes. Genotype and age interact to determine how individuals respond to environmental stress, which ultimately determines the evolutionary trajectories and persistence of populations in variable environments. For small ectothermic species, seasonal and diurnal variation in temperature is an important source of environmental stress that impacts activity patterns and suites of phenotypes directly related to whole organism fitness. I used the genetic and ecological model Drosophila melanogaster to investigate the influence of seasonal and diurnal thermal variability on survival and reproduction in genetically diverse populations. First, I characterized changes in cold tolerance and phenotypic plasticity within a natural population as it responded to seasonal shifts in developmental and short-term acclimation and thermal selection. I found that seasonal variation in cold tolerance was significantly influenced by developmental acclimation that occurred in the field as well as in the lab, where flies that developed under warmer conditions had reduced cold tolerance relative to flies that developed under cooler conditions. Second, I characterized the effect of variation in age on stress response phenotypes in a genetically variable population. I measured genotype- and age-specific responses to multiple environmental stressors, and identified regions of the genome that were associated with age-specific stress tolerance. Genome-wide association mapping revealed that age-specific phenotypes were influenced by distinct sets of polymorphisms and genes, suggesting that the evolution of age-related decline in phenotypes is driven by mutation accumulation within phenotypes, but both mutation accumulation and antagonistic pleiotropy between phenotypes. Next, I characterized the costs and benefits of acclimation for survival and reproduction to understand how physiological and behavioral plasticity interact to determine fitness. I found that phenotypic plasticity and the capacity for acclimation significantly influenced behavioral reproductive success, but the thermal cues that led to adaptive acclimation response in survival also led to decreased reproductive success. However, genotypes with the capacity to acclimate were more likely to survive thermal variation and more likely to reproduce, suggesting that genetic capacity for phenotypic plasticity has important implications for whole organism fitness. Finally, I measured the effect of acclimation on the induction of diapause and ability to survive cold stress in the recently introduced invasive species Drosophila suzukii. D. suzukii is endemic to Asia and was first detected in California in 2008 and in Topeka, KS in 2013. Its recent invasion history thus provides an interesting model to understand the role of plasiticy in the response to a novel and variable environment. I found that diapause was induced through a plastic response to acclimation and short photoperiod, though diapause was more drastically induced by acclimation. Overall, my research provides critical insights into how organisms respond to thermal variation by intergrating quantitative genetics, ecology, evolution, and life history tradeoffs. Collectively, my research demonstrates that the ability of organisms to survive thermal stress is a function of genetic capacity to tolerate stress, genetic capacity for phenotypic plasticity, prior exposure to thermal variation, and the age of the individual

    The genetic basis of adaptation to copper pollution in Drosophila melanogaster

    Get PDF
    Introduction: Heavy metal pollutants can have long lasting negative impacts on ecosystem health and can shape the evolution of species. The persistent and ubiquitous nature of heavy metal pollution provides an opportunity to characterize the genetic mechanisms that contribute to metal resistance in natural populations. Methods: We examined variation in resistance to copper, a common heavy metal contaminant, using wild collections of the model organism Drosophila melanogaster. Flies were collected from multiple sites that varied in copper contamination risk. We characterized phenotypic variation in copper resistance within and among populations using bulked segregant analysis to identify regions of the genome that contribute to copper resistance. Results and Discussion: Copper resistance varied among wild populations with a clear correspondence between resistance level and historical exposure to copper. We identified 288 SNPs distributed across the genome associated with copper resistance. Many SNPs had population-specific effects, but some had consistent effects on copper resistance in all populations. Significant SNPs map to several novel candidate genes involved in refolding disrupted proteins, energy production, and mitochondrial function. We also identified one SNP with consistent effects on copper resistance in all populations near CG11825, a gene involved in copper homeostasis and copper resistance. We compared the genetic signatures of copper resistance in the wild-derived populations to genetic control of copper resistance in the Drosophila Synthetic Population Resource (DSPR) and the Drosophila Genetic Reference Panel (DGRP), two copper-naïve laboratory populations. In addition to CG11825, which was identified as a candidate gene in the wild-derived populations and previously in the DSPR, there was modest overlap of copper-associated SNPs between the wild-derived populations and laboratory populations. Thirty-one SNPs associated with copper resistance in wild-derived populations fell within regions of the genome that were associated with copper resistance in the DSPR in a prior study. Collectively, our results demonstrate that the genetic control of copper resistance is highly polygenic, and that several loci can be clearly linked to genes involved in heavy metal toxicity response. The mixture of parallel and population-specific SNPs points to a complex interplay between genetic background and the selection regime that modifies the effects of genetic variation on copper resistance

    Characterizing the genetic basis of copper toxicity in Drosophila reveals a complex pattern of allelic, regulatory, and behavioral variation

    Get PDF
    A range of heavy metals are required for normal cell function and homeostasis. However, the anthropogenic release of metal compounds into soil and water sources presents a pervasive health threat. Copper is one of many heavy metals that negatively impacts diverse organisms at a global scale. Using a combination of quantitative trait locus (QTL) mapping and RNA sequencing in the Drosophila Synthetic Population Resource, we demonstrate that resistance to the toxic effects of ingested copper in D. melanogaster is genetically complex and influenced by allelic and expression variation at multiple loci. QTL mapping identified several QTL that account for a substantial fraction of heritability. Additionally, we find that copper resistance is impacted by variation in behavioral avoidance of copper and may be subject to life-stage specific regulation. Gene expression analysis further demonstrated that resistant and sensitive strains are characterized by unique expression patterns. Several of the candidate genes identified via QTL mapping and RNAseq have known copper-specific functions (e.g., Ccs, Sod3, CG11825), and others are involved in the regulation of other heavy metals (e.g., Catsup, whd). We validated several of these candidate genes with RNAi suggesting they contribute to variation in adult copper resistance. Our study illuminates the interconnected roles that allelic and expression variation, organism life stage, and behavior play in copper resistance, allowing a deeper understanding of the diverse mechanisms through which metal pollution can negatively impact organisms

    Phenology of Drosophila species across a temperate growing season and implications for behavior

    Get PDF
    Data have been deposited in Dryad, https://doi.org/10.5061/dryad.1bc102k.Drosophila community composition is complex in temperate regions with different abundance of flies and species across the growing season. Monitoring Drosophila populations provides insights into the phenology of both native and invasive species. Over a single growing season, we collected Drosophila at regular intervals and determined the number of individuals of the nine species we found in Kansas, USA. Species varied in their presence and abundance through the growing season with peak diversity occurring after the highest seasonal temperatures. We developed models for the abundance of the most common species, Drosophila melanogaster, D. simulans, D. algonquin, and the recent invasive species, D. suzukii. These models revealed that temperature played the largest role in abundance of each species across the season. For the two most commonly studied species, D. melanogaster and D. simulans, the best models indicate shifted thermal optima compared to laboratory studies, implying that fluctuating temperature may play a greater role in the physiology and ecology of these insects than indicated by laboratory studies, and should be considered in global climate change studies.Kansas State Biology Graduate Student Association Research GrantKU EEB GRF 210508

    The genetic basis of adaptation to copper pollution in Drosophila melanogaster

    Get PDF
    Introduction: Heavy metal pollutants can have long lasting negative impacts on ecosystem health and can shape the evolution of species. The persistent and ubiquitous nature of heavy metal pollution provides an opportunity to characterize the genetic mechanisms that contribute to metal resistance in natural populations.Methods: We examined variation in resistance to copper, a common heavy metal contaminant, using wild collections of the model organism Drosophila melanogaster. Flies were collected from multiple sites that varied in copper contamination risk. We characterized phenotypic variation in copper resistance within and among populations using bulked segregant analysis to identify regions of the genome that contribute to copper resistance.Results and Discussion: Copper resistance varied among wild populations with a clear correspondence between resistance level and historical exposure to copper. We identified 288 SNPs distributed across the genome associated with copper resistance. Many SNPs had population-specific effects, but some had consistent effects on copper resistance in all populations. Significant SNPs map to several novel candidate genes involved in refolding disrupted proteins, energy production, and mitochondrial function. We also identified one SNP with consistent effects on copper resistance in all populations near CG11825, a gene involved in copper homeostasis and copper resistance. We compared the genetic signatures of copper resistance in the wild-derived populations to genetic control of copper resistance in the Drosophila Synthetic Population Resource (DSPR) and the Drosophila Genetic Reference Panel (DGRP), two copper-naïve laboratory populations. In addition to CG11825, which was identified as a candidate gene in the wild-derived populations and previously in the DSPR, there was modest overlap of copper-associated SNPs between the wild-derived populations and laboratory populations. Thirty-one SNPs associated with copper resistance in wild-derived populations fell within regions of the genome that were associated with copper resistance in the DSPR in a prior study. Collectively, our results demonstrate that the genetic control of copper resistance is highly polygenic, and that several loci can be clearly linked to genes involved in heavy metal toxicity response. The mixture of parallel and population-specific SNPs points to a complex interplay between genetic background and the selection regime that modifies the effects of genetic variation on copper resistance

    Gene domain-specific DNA methylation episignatures highlight distinct molecular entities of ADNP syndrome.

    Get PDF
    BACKGROUND:ADNP syndrome is a rare Mendelian disorder characterized by global developmental delay, intellectual disability, and autism. It is caused by truncating mutations in ADNP, which is involved in chromatin regulation. We hypothesized that the disruption of chromatin regulation might result in specific DNA methylation patterns that could be used in the molecular diagnosis of ADNP syndrome. RESULTS: We identified two distinct and partially opposing genomic DNA methylation episignatures in the peripheral blood samples from 22 patients with ADNP syndrome. The epi-ADNP-1 episignature included ~ 6000 mostly hypomethylated CpGs, and the epi-ADNP-2 episignature included ~ 1000 predominantly hypermethylated CpGs. The two signatures correlated with the locations of the ADNP mutations. Epi-ADNP-1 mutations occupy the N- and C-terminus, and epi-ADNP-2 mutations are centered on the nuclear localization signal. The episignatures were enriched for genes involved in neuronal system development and function. A classifier trained on these profiles yielded full sensitivity and specificity in detecting patients with either of the two episignatures. Applying this model to seven patients with uncertain clinical diagnosis enabled reclassification of genetic variants of uncertain significance and assigned new diagnosis when the primary clinical suspicion was not correct. When applied to a large cohort of unresolved patients with developmental delay (N = 1150), the model predicted three additional previously undiagnosed patients to have ADNP syndrome. DNA sequencing of these subjects, wherever available, identified pathogenic mutations within the gene domains predicted by the model. CONCLUSIONS: We describe the first Mendelian condition with two distinct episignatures caused by mutations in a single gene. These highly sensitive and specific DNA methylation episignatures enable diagnosis, screening, and genetic variant classifications in ADNP syndrome

    Supplemental Material for Everman and Macdonald, 2023

    No full text
    We measured variation in gene expression in head and gut tissue in response to copper in multiple Drosophila melanogaster strains. Using a combination of differential expression analysis and eQTL mapping, we examined treatment and tissue specific pattens in gene expression response.</p

    Data from: Phenology of Drosophila species across a temperate growing season and implications for behavior

    No full text
    Drosophila community composition is complex in temperate regions with different abundance of flies and species across the growing season. Monitoring Drosophila populations provides insights into the phenology of both native and invasive species. Over a single growing season, we collected Drosophila at regular intervals and determined the number of individuals of the nine species we found in Kansas, USA. Species varied in their presence and abundance through the growing season with peak diversity occurring after the highest seasonal temperatures. We developed models for the abundance of the most common species, Drosophila melanogaster, D. simulans, D. algonquin, and the recent invasive species, D. suzukii. These models revealed that temperature played the largest role in abundance of each species across the season. For the two most commonly studied species, D. melanogaster and D. simulans, the best models indicate shifted thermal optima compared to laboratory studies, implying that fluctuating temperature may play a greater role in the physiology and ecology of these insects than indicated by laboratory studies, and should be considered in global climate change studies

    initial.values

    No full text
    The suggested initial values for the model. See the R Scripts for more information about the model

    RScripts

    No full text
    The RScripts used to calculate the model
    corecore