10 research outputs found

    The YOUth cohort study: MRI protocol and test-retest reliability in adults

    Get PDF
    The YOUth cohort study is a unique longitudinal study on brain development in the general population. As part of the YOUth study, 2000 children will be included at 8, 9 or 10 years of age and planned to return every three years during adolescence. Magnetic resonance imaging (MRI) brain scans are collected, including structural T1-weighted imaging, diffusion-weighted imaging (DWI), resting-state functional MRI and task-based functional MRI. Here, we provide a comprehensive report of the MR acquisition in YOUth Child & Adolescent including the test-retest reliability of brain measures derived from each type of scan. To measure test-retest reliability, 17 adults were scanned twice with a week between sessions using the full YOUth MRI protocol. Intraclass correlation coefficients were calculated to quantify reliability. Global brain measures derived from structural T1-weighted and DWI scans were reliable. Resting-state functional connectivity was moderately reliable, as well as functional brain measures for both the inhibition task (stop versus go) and the emotion task (face versus house). Our results complement previous studies by presenting reliability results of regional brain measures collected with different MRI modalities. YOUth facilitates data sharing and aims for reliable and high-quality data. Here we show that using the state-of-the art YOUth MRI protocol brain measures can be estimated reliably

    Adverse childhood experiences and fronto-subcortical structures in the developing brain

    Get PDF
    The impact of adverse childhood experiences (ACEs) differs between individuals and depends on the type and timing of the ACE. The aim of this study was to assess the relation between various recently occurred ACEs and morphology in the developing brain of children between 8 and 11 years of age. We measured subcortical volumes, cortical thickness, cortical surface area and fractional anisotropy in regions of interest in brain scans acquired in 1,184 children from the YOUth cohort. ACEs were based on parent-reports of recent experiences and included: financial problems; parental mental health problems; physical health problems in the family; substance abuse in the family; trouble with police, justice or child protective services; change in household composition; change in housing; bereavement; divorce or conflict in the family; exposure to violence in the family and bullying victimization. We ran separate linear models for each ACE and each brain measure. Results were adjusted for the false discovery rate across regions of interest. ACEs were reported for 83% of children in the past year. Children were on average exposed to two ACEs. Substance abuse in the household was associated with larger cortical surface area in the left superior frontal gyrus, t(781) = 3.724, pFDR = 0.0077, right superior frontal gyrus, t(781) = 3.409, pFDR = 0.0110, left pars triangularis, t(781) = 3.614, pFDR = 0.0077, left rostral middle frontal gyrus, t(781) = 3.163, pFDR = 0.0195 and right caudal anterior cingulate gyrus, t(781) = 2.918, pFDR = 0.0348. Household exposure to violence (was associated with lower fractional anisotropy in the left and right cingulum bundle hippocampus region t(697) = −3.154, pFDR = 0.0101 and t(697) = −3.401, pFDR = 0.0085, respectively. Lower household incomes were more prevalent when parents reported exposure to violence and the mean parental education in years was lower when parents reported substance abuse in the family. No other significant associations with brain structures were found. Longer intervals between adversity and brain measurements and longitudinal measurements may reveal whether more evidence for the impact of ACEs on brain development will emerge later in life

    De-identification procedures for magnetic resonance images and the impact on structural brain measures at different ages

    No full text
    Surface rendering of MRI brain scans may lead to identification of the participant through facial characteristics. In this study, we evaluate three methods that overwrite voxels containing privacy-sensitive information: Face Masking, FreeSurfer defacing, and FSL defacing. We included structural T1-weighted MRI scans of children, young adults and older adults. For the young adults, test–retest data were included with a 1-week interval. The effects of the de-identification methods were quantified using different statistics to capture random variation and systematic noise in measures obtained through the FreeSurfer processing pipeline. Face Masking and FSL defacing impacted brain voxels in some scans especially in younger participants. FreeSurfer defacing left brain tissue intact in all cases. FSL defacing and FreeSurfer defacing preserved identifiable characteristics around the eyes or mouth in some scans. For all de-identification methods regional brain measures of subcortical volume, cortical volume, cortical surface area, and cortical thickness were on average highly replicable when derived from original versus de-identified scans with average regional correlations &gt;.90 for children, young adults, and older adults. Small systematic biases were found that incidentally resulted in significantly different brain measures after de-identification, depending on the studied subsample, de-identification method, and brain metric. In young adults, test–retest intraclass correlation coefficients (ICCs) were comparable for original scans and de-identified scans with average regional ICCs &gt;.90 for (sub)cortical volume and cortical surface area and ICCs &gt;.80 for cortical thickness. We conclude that apparent visual differences between de-identification methods minimally impact reliability of brain measures, although small systematic biases can occur.</p

    Sex Differences in Lifespan Trajectories and Variability of Human Sulcal and Gyral Morphology

    Get PDF
    Sex differences in the development and aging of human sulcal morphology have been understudied. We charted sex differences in trajectories and inter-individual variability of global sulcal depth, width, and length, pial surface area, exposed (hull) gyral surface area, unexposed sulcal surface area, cortical thickness, gyral span, and cortex volume across the lifespan in a longitudinal sample (700 scans, 194 participants 2 scans, 104 three scans, age range: 16-70 years) of neurotypical males and females. After adjusting for brain volume, females had thicker cortex and steeper thickness decline until age 40 years; trajectories converged thereafter. Across sexes, sulcal shortening was faster before age 40, while sulcal shallowing and widening were faster thereafter. Although hull area remained stable, sulcal surface area declined and was more strongly associated with sulcal shortening than with sulcal shallowing and widening. Males showed greater variability for cortex volume and lower variability for sulcal width. Our findings highlight the association between loss of sulcal area, notably through sulcal shortening, with cortex volume loss. Studying sex differences in lifespan trajectories may improve knowledge of individual differences in brain development and the pathophysiology of neuropsychiatric conditions

    Longitudinal Allometry of Sulcal Morphology in Health and Schizophrenia

    No full text
    Scaling between subcomponents of folding and total brain volume (TBV) in healthy individuals (HIs) is allometric. It is unclear whether this is true in schizophrenia (SZ) or first-episode psychosis (FEP). This study confirmed normative allometric scaling norms in HIs using discovery and replication samples. Cross-sectional and longitudinal diagnostic differences in folding subcomponents were then assessed using an allometric framework. Structural imaging from a longitudinal (Sample 1: HI and SZ, nHI Baseline = 298, nSZ Baseline = 169, nHI Follow-up = 293, nSZ Follow-up = 168, totaling 1087 images, all individuals ≄ 2 images, age 16-69 years) and a cross-sectional sample (Sample 2: nHI = 61 and nFEP = 89, age 10-30 years), all human males and females, is leveraged to calculate global folding and its nested subcomponents: sulcation index (SI, total sulcal/cortical hull area) and determinants of sulcal area: sulcal length and sulcal depth. Scaling of SI, sulcal area, and sulcal length with TBV in SZ and FEP was allometric and did not differ from HIs. Longitudinal age trajectories demonstrated steeper loss of SI and sulcal area through adulthood in SZ. Longitudinal allometric analysis revealed that both annual change in SI and sulcal area was significantly stronger related to change in TBV in SZ compared with HIs. Our results detail the first evidence of the disproportionate contribution of changes in SI and sulcal area to TBV changes in SZ. Longitudinal allometric analysis of sulcal morphology provides deeper insight into lifespan trajectories of cortical folding in SZ

    Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder Hum Brain Mapp

    No full text
    First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment

    Genetic variants associated with longitudinal changes in brain structure across the lifespan

    No full text
    Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging

    Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder

    No full text
    First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = −0.42, p = 3 × 10−5), with weak evidence of IQ reductions among BD-FDRs (d = −0.23, p =.045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment

    Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder

    No full text
    First‐degree relatives of patients diagnosed with schizophrenia (SZ‐FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First‐degree relatives of patients diagnosed with bipolar disorder (BD‐FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD‐FDRs are inconsistent. Here, we performed a meta‐analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ‐FDRs, 867 BD‐FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ‐FDRs showed a pattern of widespread thinner cortex, while BD‐FDRs had widespread larger cortical surface area. IQ was lower in SZ‐FDRs (d = −0.42, p = 3 × 10(−5)), with weak evidence of IQ reductions among BD‐FDRs (d = −0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group‐effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ‐FDRs and more pronounced effects in BD‐FDRs. To conclude, SZ‐FDRs and BD‐FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ‐FDRs and BD‐FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment

    Dynamics of brain structure and its genetic architecture over the lifespan

    No full text
    Human brain structure changes throughout our lives. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental, and neurodegenerative diseases. While heritable, specific loci in the genome that influence these rates are largely unknown. Here, we sought to find common genetic variants that affect rates of brain growth or atrophy, in the first genome-wide association analysis of longitudinal changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 10,163 individuals aged 4 to 99 years, on average 3.5 years apart, were used to compute rates of morphological change for 15 brain structures. We discovered 5 genome-wide significant loci and 15 genes associated with brain structural changes. Most individual variants exerted age-dependent effects. All identified genes are expressed in fetal and adult brain tissue, and some exhibit developmentally regulated expression across the lifespan. We demonstrate genetic overlap with depression, schizophrenia, cognitive functioning, height, body mass index and smoking. Several of the discovered loci are implicated in early brain development and point to involvement of metabolic processes. Gene-set findings also implicate immune processes in the rates of brain changes. Taken together, in the world’s largest longitudinal imaging genetics dataset we identified genetic variants that alter age-dependent brain growth and atrophy throughout our lives
    corecore