33 research outputs found

    The Design of New Adjuvants for Mucosal Immunity to Neisseria meningitidis B in Nasally Primed Neonatal Mice for Adult Immune Response

    Get PDF
    The aim of this study was to determine the value of detoxified Shiga toxins Stx1 and Stx2 (toxoids of Escherichia coli) as mucosal adjuvants in neonatal mice for immunogenicity against the outer membrane proteins (OMPs) of Neisseria meningitidis B. Mucosal immunization has been shown to be effective for the induction of antigen-specific immune responses in both the systemic and mucosal compartments. Systemic antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, and IgA) and mucosal IgM and IgA were measured by ELISA using an N. meningitidis as an antigen. In addition, IFN-γ and IL-6 production were measured after stimulated proliferation of immune cells. Intranasal administration elicited a higher anti-OMP IgA response in both saliva and vaginal fluids. Our results suggest that both Stx1 and Stx2 toxoids are effective mucosal adjuvants for the induction of Ag-specific IgG, IgM, and IgA antibodies. The toxoids significantly enhanced the IgG and IgM response against OMPs with a potency equivalent to CT, with the response being characterized by both IgG1 and IgG2a isotypes, and increased IFN-gamma production. Additionally, bactericidal activity was induced with IgG and IgM antibodies of high avidity. These results support the use of the new toxoids as potent inducing adjuvants that are particularly suitable for mucosal immunization

    Outer Membrane Vesicles: A Challenging Yet Promising Platform for COVID-19 Vaccines

    Get PDF
    The outer membrane vesicles (OMVs) are vesicles released from Gram-negative bacteria, which present a range of biological applications, such as vaccine adjuvants. OMVs present several pathogen-associated molecular patterns, being immunogenic and capable of triggering different arms of the immune response. Thus, they are suitable for mucosal and parenteral delivery, feasible to obtain and have been used in licensed-vaccines previously. However, the extraction protocols and manipulations can modify OMVs cargo and, consequentially, the immunization results. Therefore, this chapter will review OMVs use as adjuvant and discuss results from COVID-19 vaccines which employed this technique

    Trained-immunity and cross-reactivity for protection: insights from the coronavirus disease 2019 and monkeypox emergencies for vaccine development

    Get PDF
    The emergence and re-emergence of pathogens is a public-health concern, which has become more evident after the coronavirus disease 2019 (COVID-19) pandemic and the monkeypox outbreaks in early 2022. Given that vaccines are the more effective and affordable tools to control infectious diseases, the authors reviewed two heterologous effects of vaccines: the trained immunity and the cross-reactivity. Trained immunity, provided by attenuated vaccines, was exemplified in this article by the decreased the burden of COVID-19 in populations with high Bacille Calmette-Guerin (BCG) coverage. Cross-reactive responses were exemplified here by the studies which suggested that vaccinia could help controlling the monkeypox outbreak, because of common epitopes shared by orthopoxviruses. Although modern vaccination is likely to use subunit vaccines, the authors discussed how adjuvants might be the key to induce trained immunity and improve cross-reactive responses, ensuring that heterologous effects would improve the vaccine’s response

    Produção de anticorpos monoclonais anti-cisticercos de Taenia crassiceps com reatividade cruzada com antígenos de Taenia solium

    Get PDF
    We describe the production of the potential monoclonal antibodies (MoAbs) using BALB/c mice immunized with vesicular fluid (VF)-Tcra (T. crassiceps) antigen. Immune sera presented anti-VF-Tcra (É descrita a produção de potenciais anticorpos monoclonais (MoAbs) usando camundongos BALB/c imunizados com antígenos de líquido vesicular de T. crassiceps (VF-Tcra). O soro imune apresentou anticorpos IgM e IgG anti-VF-Tcra para os peptídeo

    Caracterização molecular de Cryptosporidium spp. de pacientes de área urbana do Brasil infectados por HIV

    Get PDF
    Cryptosporidium spp. são importantes causas de doenças entéricas em humanos, mas podem também ser encontrados em animais. O presente estudo descreve a frequência relativa de diversas espécies de Cryptosporidium em amostras de humanos da cidade de São Paulo, Brasil, obtidas de janeiro a julho de 2007. Análises de sequências de produtos de nested PCR direcionadas ao genes codificadores da menor unidade ribosomal e da proteina de parede de oocistos revelaram 17 (63,0%) isolados de C. hominis, quatro (14,8%) C. parvum, cinco (18,5%) C. felis, e um (3,7%) C. canis. Estes resultados sugerem que, em ambientes urbanos no Brasil, o genótipo adaptado ao gato pode desempenhar potencial papel na transmissão zoonótica de criptosporidiose, enquanto a transmissão antroponótica da criptosporidiose causada pelo C. hominis parece predominar.Cryptosporidium spp. are important cause of enteric disease in humans, but may also infect animals. This study describes the relative frequency of several Cryptosporidium species found in human specimens from HIV infected patients in the São Paulo municipality obtained from January to July 2007. Sequence analysis of the products of nested-PCR based on small subunit rRNA and Cryptosporidium oocyst wall protein coding genes revealed 17 (63.0%) isolates of C. hominis, four (14.8%) C. parvum, five (18.5%) C. felis and one (3.7%) C. canis. These findings suggest that, in urban environments of Brazil, the cat adapted C. felis may play a potential role in the zoonotic transmission of cryptosporidiosis whereas the anthroponotic transmission of cryptosporidiosis caused by C. hominis seems to predominate

    Labilidade da atividade hemaglutinante dos anticorpos de camundongos infectados com Trypanosoma cruzi

    No full text
    BV UNIFESP: Teses e dissertaçõe

    Expression of class 5 antigens by meningococcal strains obtained from patients in Brazil and evaluation of two new monoclonal antibodies

    No full text
    Determining the profile of antigen expression among meningococci is important for epidemiologic surveillance and vaccine development. To this end, two new mouse monoclonal antibodies (MAbs) have been derived against Neisseria meningitidis proteins (class 5). The MAbs were reactive against outer membrane antigens and were bactericidal. Selected anti-class 5 MAbs [(5.1)-3E6-2; (5.3)-3BH4-C7; (5.4)-1BG11-C7; (5.5)-3DH-F5G9 also 5F1F4-T3(5.c)], and the two new monoclonal antibodies C14F10Br2 (5.8) and 7F11B5Br3 (5.9), were then tested against different meningococcal strains, (63 strains of serogroup A, 60 strains of serogroup C (from 1972 to 1974); and 136 strains of serogroup B (from 1992) meningococci). Our results demonstrated that the expression of class 5 proteins in the N. meningitidis B Brazilian strains studied is highly heterogeneous. The serotypes and subtypes of B:4:P1.15, B:4:P1.9, B:4:P1.7, B:4:P1.3, B:4:P1.14, B:4:P1.16, B:4:NT, and B:NT:NT were detected in N. meningitidis B serogroups.The strains C:2a:P1.2 and A:4.21:P1.9 were dominant in the C and A serogroups, respectively. Serogroup B organisms expressed the class 5 epitopes 5.4 (18%), 5.5 (22%), 5.8 (3.6%), 5.9 (8.0%) and 5c (38%). Serogroup C expressed class 5 epitopes 5.1 (81%), 5.4 (35%), 5.5 (33%) and 5.9 (5.0%); and serogroup A showed reactivity directed at the class 5 protein 5c (47%); and reactivity was present with the new monoclonal antibody, 5.9 (5.5%). We conclude that the two new MAbs are useful in detecting important group B, class 5 antigens, and that a broad selection of serogroup B, class 5 proteins would be required for an effective vaccine based on the class 5 proteins
    corecore