88 research outputs found

    Nonatonic obstetric haemorrhage: effectiveness of the nonpneumatic antishock garment in egypt.

    Get PDF
    The study aims to determine if the nonpneumatic antishock garment (NASG), a first aid compression device, decreases severe adverse outcomes from nonatonic obstetric haemorrhage. Women with nonatonic aetiologies (434), blood loss > 1000 mL, and signs of shock were eligible. Women received standard care during the preintervention phase (226) and standard care plus application of the garment in the NASG phase (208). Blood loss and extreme adverse outcomes (EAO-mortality and severe morbidity) were measured. Women who used the NASG had more estimated blood loss on admission. Mean measured blood loss was 370 mL in the preintervention phase and 258 mL in the NASG phase (P < 0.0001). EAO decreased with use of the garment (2.9% versus 4.4%, (OR 0.65, 95% CI 0.24-1.76)). In conclusion, using the NASG improved maternal outcomes despite the worse condition on study entry. These findings should be tested in larger studies

    Adapting Advanced Inorganic Chemistry Lecture and Laboratory Instruction for a Legally Blind Student

    Get PDF
    In this article, the strategies and techniques used to successfully teach advanced inorganic chemistry, in the lecture and laboratory, to a legally blind student are described. At Fairfield University, these separate courses, which have a physical chemistry corequisite or a prerequisite, are taught for junior and senior chemistry and biochemistry majors. A student earns a separate grade in each the lecture (three credits) and the laboratory course (two credits). An overview of the course topics is given, followed by general accommodations and specific approaches that were used. Student assistants were very helpful and provided extra support for the blind student. Student assistants were utilized for the laboratory course, problem sets, and exams. Specific examples and detailed explanations of approaches that were helpful to the legally blind student throughout the entire course are provided. The legally blind student benefited from extensive, verbal description of complexes, figures, and diagrams. In addition, the student benefited from tactile description of figures and models. The student assistants and extra office hours were essential for the blind student to succeed and excel in advanced inorganic chemistry. The approaches discussed in this paper are the product of immediate and continual feedback from the student over the course of the semester. The student would frequently comment after class that he followed the lesson or was confused, and the latter comment elicited experimentation with different approaches

    Investigation of liver alcohol dehydrogenase catalysis using an NADH biomimetic and comparison with a synthetic zinc model complex

    Get PDF
    We have compared the catalytic activity of horse liver alcohol dehydrogenase (LADH) with a synthetic zinc model complex in the presence of N-benzyl-1,4-dihydronicotinamide (BNAH), a cofactor which serves as a biomimetic for the natural cofactor NADH. We have used five different substrates (benzaldehyde, p-anisaldehyde, 4-nitrobenzaldehyde, 2-pyridine carboxaldehyde, and 5-pyrimidine carboxaldehyde) in this study. These substrates vary in their substituent inductive effect, which is the ability to donate or withdraw electron density away from their carbonyl-functional group. Our results reveal that in the presence of NADH, geometric factors (induced fit of the substrate and cofactor in the enzyme active site) are vital. However, reactivity assays show that in the presence of BNAH, there is a strong correlation between substrate electronic environment and the observed catalytic rate, i.e. the more electron withdrawn the substrate, the greater the speed at which the reduction reaction occurs. NMR spectroscopy reveals that a synthetic zinc model complex catalyzes the reduction of substrates in a manner consistent with LADH enzyme

    Synthesis, Characterization, Density Functional Theory Calculations, and Activity of a Thione-Containing NNN-Zinc Pincer Complex Based on a Bis-triazole Precursor

    Get PDF
    A novel ambidentate tridentate pincer ligand based on a bis-triazole precursor, was prepared, characterized, and metallated with ZnCl2 to give a new tridentate NNN-bound pincer zinc(II) pincer complex: dichloro(η3-N,N,N)-[2,6-bis(3-[N-butyl]triazol-5-thione-1-yl)]pyridinezinc(II), [(NNN)ZnCl2]. This compound has pseudo-trigonal bipyramidal geometry at the zinc(II) center and exhibits metal–ligand binding that contrasts with our previously reported SNS-bound systems despite the availability of these same donor atoms in the current ligand set. The zinc complex was characterized with single crystal X-ray diffraction, 1H, 13C, and HSQC NMR spectroscopies, and electrospray mass spectrometry. The ligand precursors were characterized with 1H, 13C, and HSQC NMR spectroscopies, and cyclic voltammetry, and were found to be redox active. Density functional calculations, which investigate and support the nature of the NNN binding suggest that the experimentally observed oxidation and reduction waves are not the result of a simple one-electron process. The zinc complex was screened for the reduction of electron-poor aldehydes in the presence of a hydrogen donor, 1-benzyl-1,4-dihydronicotinamide (BNAH), and it was determined that they enhance the reduction of 4-nitrobenzaldehyde. Quantitative stoichiometric conversion was seen for the reduction of pyridine-2-carboxaldehyde

    Syntheses, characterization, density functional theory calculations, and activity of tridentate SNS zinc pincer complexes based on bis-imidazole or bis-triazole precursors

    Get PDF
    A series of tridentate pincer ligands, each possessing two sulfur- and one nitrogen-donor functionalities (SNS), based on bis-imidazole or bis-triazole salts were metallated with ZnCl2 to give new tridentate SNS pincer zinc(II) complexes [(SNS)ZnCl]+. The zinc complexes serve as models for the zinc active site in liver alcohol dehydrogenase (LADH) and were characterized with single crystal X-ray diffraction, 1H, 13C, and HSQC NMR spectroscopies, electrospray mass spectrometry, and elemental analysis. The zinc complexes feature SNS donor atoms and pseudotetrahedral geometry about the zinc center, as is seen for liver alcohol dehydrogenase. The bond lengths and bond angles of the zinc complexes correlate well to those in horse LADH. The SNS ligand precursors were characterized with 1H, 13C, and HSQC NMR spectroscopies, elemental analysis, and cyclic voltammetry, and were found to be redox active. Gaussian calculations were performed and agree with the experimentally observed oxidation potentials for the pincer ligand precursors. The zinc complexes were screened for the reduction of electron-poor aldehydes in the presence of a hydrogen donor, 1-benzyl-1,4-dihydronicotinamide (BNAH), and it was determined that they enhance the reduction of electron-poor aldehydes. The SNS zinc pincer complexes with bis-triazole ligand precursors exhibit higher activity for the reduction of 4-nitrobenzaldehyde than do SNS zinc pincer complexes with bis-imidazole ligand precursors. Quantitative stoichiometric conversion was seen for the reduction of pyridine-2-carboxaldehyde via SNS zinc pincer complexes with either bis-imidazole or bis-triazole ligand precursors

    Obstetric hemorrhage and shock management: using the low technology Non-pneumatic Anti-Shock Garment in Nigerian and Egyptian tertiary care facilities

    Get PDF
    Abstract Background Obstetric hemorrhage is the leading cause of maternal mortality globally. The Non-pneumatic Anti-Shock Garment (NASG) is a low-technology, first-aid compression device which, when added to standard hypovolemic shock protocols, may improve outcomes for women with hypovolemic shock secondary to obstetric hemorrhage in tertiary facilities in low-resource settings. Methods This study employed a pre-intervention/intervention design in four facilities in Nigeria and two in Egypt. Primary outcomes were measured mean and median blood loss, severe end-organ failure morbidity (renal failure, pulmonary failure, cardiac failure, or CNS dysfunctions), mortality, and emergency hysterectomy for 1442 women with ≄750 mL blood loss and at least one sign of hemodynamic instability. Comparisons of outcomes by study phase were assessed with rank sum tests, relative risks (RR), number needed to treat for benefit (NNTb), and multiple logistic regression. Results Women in the NASG phase (n = 835) were in worse condition on study entry, 38.5% with mean arterial pressure <60 mmHg vs. 29.9% in the pre-intervention phase (p = 0.001). Despite this, negative outcomes were significantly reduced in the NASG phase: mean measured blood loss decreased from 444 mL to 240 mL (p < 0.001), maternal mortality decreased from 6.3% to 3.5% (RR 0.56, 95% CI 0.35-0.89), severe morbidities from 3.7% to 0.7% (RR 0.20, 95% CI 0.08-0.50), and emergency hysterectomy from 8.9% to 4.0% (RR 0.44, 0.23-0.86). In multiple logistic regression, there was a 55% reduced odds of mortality during the NASG phase (aOR 0.45, 0.27-0.77). The NNTb to prevent either mortality or severe morbidity was 18 (12-36). Conclusion Adding the NASG to standard shock and hemorrhage management may significantly improve maternal outcomes from hypovolemic shock secondary to obstetric hemorrhage at tertiary care facilities in low-resource settings

    Synthesis, Characterization, and Computational Study of Three-Coordinate SNS Copper(I) Complexes Based on Bis-Thione Ligand Precursors

    Get PDF
    A series of tridentate pincer ligands, each possessing two sulfur and one nitrogen donor (SNS), based on bis-imidazolyl or bis-triazolyl salts were metallated with CuCl2 to give new tridentate SNS pincer copper(I) complexes [(SNS)Cu]+. These orange complexes exhibit a three-coordinate pseudo-trigonal-planar geometry in copper. During the formation of these copper(I) complexes, disproportionation is observed as the copper(II) salt precursor is converted into the Cu(I) [(SNS)Cu]+ cation and the [CuCl4]2– counteranion. The [(SNS)Cu]+ complexes were characterized with single crystal X-ray diffraction, electrospray mass spectrometry, EPR spectroscopy, attenuated total reflectance infrared spectroscopy, UV–Vis spectroscopy, cyclic voltammetry, and elemental analysis. The EPR spectra are consistent with anisotropic Cu(II) signals with four hyperfine splittings in the lower-field region (g||) and g values consistent with the presence of the tetrachlorocuprate. Various electronic transitions are apparent in the UV–Vis spectra of the complexes and originate in the copper-containing cations and anions. Density functional calculations support the nature of the SNS binding, allowing assignment of a number of features present in the UV–Vis and IR spectra and cyclic voltammograms of these complexes

    Syntheses, Characterization, Density Functional Theory Calculations, and Activity of Tridentate SNS Zinc Pincer Complexes Based on Bis-Imidazole or Bis-Triazole Precursors

    Get PDF
    A series of tridentate pincer ligands, each possessing two sulfur- and one nitrogen-donor functionalities (SNS), based on bis-imidazole or bis-triazole salts were metallated with ZnCl2 to give new tridentate SNS pincer zinc(II) complexes [(SNS)ZnCl]+. The zinc complexes serve as models for the zinc active site in liver alcohol dehydrogenase (LADH) and were characterized with single crystal X-ray diffraction, 1H, 13C, and HSQC NMR spectroscopies, electrospray mass spectrometry, and elemental analysis. The zinc complexes feature SNS donor atoms and pseudotetrahedral geometry about the zinc center, as is seen for liver alcohol dehydrogenase. The bond lengths and bond angles of the zinc complexes correlate well to those in horse LADH. The SNS ligand precursors were characterized with 1H, 13C, and HSQC NMR spectroscopies, elemental analysis, and cyclic voltammetry, and were found to be redox active. Gaussian calculations were performed and agree with the experimentally observed oxidation potentials for the pincer ligand precursors. The zinc complexes were screened for the reduction of electron-poor aldehydes in the presence of a hydrogen donor, 1-benzyl-1,4-dihydronicotinamide (BNAH), and it was determined that they enhance the reduction of electron-poor aldehydes. The SNS zinc pincer complexes with bis-triazole ligand precursors exhibit higher activity for the reduction of 4-nitrobenzaldehyde than do SNS zinc pincer complexes with bis-imidazole ligand precursors. Quantitative stoichiometric conversion was seen for the reduction of pyridine-2-carboxaldehyde via SNS zinc pincer complexes with either bis-imidazole or bis-triazole ligand precursors

    Syntheses and characterization of three-and five-coordinate copper(II) complexes based on SNS pincer ligand precursors

    Get PDF
    A series of tridentate pincer ligands, each possessing two sulfur- and one nitrogen-donor functionalities (SNS), based on a bis-imidazolyl precursor were metallated with CuCl2 to give new tridentate SNS pincer copper(II) complexes [(SNS)CuCl2]. These purple complexes exhibit a five-coordinate pseudo-square pyramidal geometry at the copper center. The [(SNS)CuCl2] complexes were characterized with single crystal X-ray diffraction, electrospray mass spectrometry, EPR spectroscopy, attenuated total reflectance infrared spectroscopy, UV–Vis spectroscopy, cyclic voltammetry, and elemental analysis. The EPR spectra are consistent with typical anisotropic Cu(II) signals with four hyperfine splittings in the lower-field region (g||). Various electronic transitions are apparent in the UV–Vis spectra of the complexes and originate from d-to-d transitions or various charge transfer transitions. We preformed computational studies to understand the influence that structural constraints internal to our tridentate SNS ligand precursors have on the oxidation state of the resulting bound copper complex. We have determined that a d9 copper(II) metal center is better situated than a d10 copper(I) center to bind our tridentate SNS ligand set when it does not contain an internal CH2 group. Without this methylene linker, the SNS ligand forces the N and S atoms into a T-shaped arrangement about the metal center

    Can the Non-pneumatic Anti-Shock Garment (NASG) reduce adverse maternal outcomes from postpartum hemorrhage? Evidence from Egypt and Nigeria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Postpartum hemorrhage (PPH) is the leading cause of maternal mortality and severe maternal morbidity. The Non-pneumatic Anti-Shock Garment (NASG), a first-aid lower-body compression device, may decrease adverse outcomes from obstetric hemorrhage. This article is the first to report the effect of the NASG for PPH.</p> <p>Methods</p> <p>This pre-intervention/NASG study of 854 women was conducted in four referral facilities in Nigeria and two in Egypt between 2004-2008. Entry criteria were women with PPH due to uterine atony, retained placenta, ruptured uterus, vaginal or cervical lacerations or placenta accreta with estimated blood loss of ≄ 750 mL and one clinical sign of shock. Differences in demographics, conditions on study entry, treatment and outcomes were examined. The Wilcoxon rank-sum test and relative risks with 95% confidence intervals were calculated for primary outcomes - measured blood loss, emergency hysterectomy, mortality, morbidity (each individually), and a combined variable, "adverse outcomes", defined as severe morbidity and mortality. A multiple logistic regression model was fitted to test the independent association between the NASG and the combined severe morbidity and mortality outcome.</p> <p>Results</p> <p>Measured blood loss decreased by 50% between phases; women experienced 400 mL of median blood loss after study entry in the pre-intervention and 200 mL in the NASG phase (p < 0.0001). As individual outcomes, mortality decreased from 9% pre-intervention to 3.1% in the NASG phase (RR 0.35, 95% CI 0.19-0.62); severe morbidity decreased from 4.2% to 1%, in the NASG phase (RR 0.24, 95% CI 0.09-0.67). As a combination, "adverse outcomes," decreased from 12.8% to 4.1% in the NASG phase (RR 0.32, 95% CI 0.19-0.53). In a multiple logistic regression model, the NASG was associated with the combined outcome of severe maternal morbidity and mortality (OR 0.42, 95% CI 0.18-0.99).</p> <p>Conclusion</p> <p>In this non-randomized study, in which bias is inherent, the NASG showed promise for reducing blood loss, emergency hysterectomy, morbidity and mortality associated with PPH in referral facilities in Egypt and Nigeria.</p
    • 

    corecore