10 research outputs found

    Phosphorylation by Dyrk1A of Clathrin Coated Vesicle-Associated Proteins: Identification of the Substrate Proteins and the Effects of Phosphorylation

    Get PDF
    Dyrk1A phosphorylated multiple proteins in the clathrin-coated vesicle (CCV) preparations obtained from rat brains. Mass spectrometric analysis identified MAP1A, MAP2, AP180, and α- and β-adaptins as the phosphorylated proteins in the CCVs. Each protein was subsequently confirmed by [32P]-labeling and immunological methods. The Dyrk1A-mediated phosphorylation released the majority of MAP1A and MAP2 and enhanced the release of AP180 and adaptin subunits from the CCVs. Furthermore, Dyrk1A displaced adaptor proteins physically from CCVs in a kinase-concentration dependent manner. The clathrin heavy chain release rate, in contrast, was not affected by Dyrk1A. Surprisingly, the Dyrk1A-mediated phosphorylation of α- and β-adaptins led to dissociation of the AP2 complex, and released only β-adaptin from the CCVs. AP180 was phosphorylated by Dyrk1A also in the membrane-free fractions, but α- and β-adaptins were not. Dyrk1A was detected in the isolated CCVs and was co-localized with clathrin in neurons from mouse brain sections and from primary cultured rat hippocampus. Previously, we proposed that Dyrk1A inhibits the onset of clathrin-mediated endocytosis in neurons by phosphorylating dynamin 1, amphiphysin 1, and synaptojanin 1. Current results suggest that besides the inhibition, Dyrk1A promotes the uncoating process of endocytosed CCVs

    Evaluation of the impact of interdisciplinarity in cancer care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Teamwork is a key component of the health care renewal strategy emphasized in Quebec, elsewhere in Canada and in other countries to enhance the quality of oncology services. While this innovation would appear beneficial in theory, empirical evidences of its impact are limited. Current efforts in Quebec to encourage the development of local interdisciplinary teams in all hospitals offer a unique opportunity to assess the anticipated benefits. These teams working in hospital outpatient clinics are responsible for treatment, follow-up and patient support. The study objective is to assess the impact of interdisciplinarity on cancer patients and health professionals.</p> <p>Methods/Design</p> <p>This is a quasi-experimental study with three comparison groups distinguished by intensity of interdisciplinarity: strong, moderate and weak. The study will use a random sample of 12 local teams in Quebec, stratified by intensity of interdisciplinarity. The instrument to measure the intensity of the interdisciplinarity, developed in collaboration with experts, encompasses five dimensions referring to aspects of team structure and process. Self-administered questionnaires will be used to measure the impact of interdisciplinarity on patients (health care utilization, continuity of care and cancer services responsiveness) and on professionals (professional well-being, assessment of teamwork and perception of teamwork climate). Approximately 100 health professionals working on the selected teams and 2000 patients will be recruited. Statistical analyses will include descriptive statistics and comparative analysis of the impact observed according to the strata of interdisciplinarity. Fixed and random multivariate statistical models (multilevel analyses) will also be used.</p> <p>Discussion</p> <p>This study will pinpoint to what extent interdisciplinarity is linked to quality of care and meets the complex and varied needs of cancer patients. It will ascertain to what extent interdisciplinary teamwork facilitated the work of professionals. Such findings are important given the growing prevalence of cancer and the importance of attracting and retaining health professionals to work with cancer patients.</p

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Review: Engineering of thermostable enzymes for industrial applications

    Get PDF
    The catalytic properties of some selected enzymes have long been exploited to carry out efficient and cost-effective bioconversions in a multitude of research and industrial sectors, such as food, health, cosmetics, agriculture, chemistry, energy, and others. Nonetheless, for several applications, naturally occurring enzymes are not considered to be viable options owing to their limited stability in the required working conditions. Over the years, the quest for novel enzymes with actual potential for biotechnological applications has involved various complementary approaches such as mining enzyme variants from organisms living in extreme conditions (extremophiles), mimicking evolution in the laboratory to develop more stable enzyme variants, and more recently, using rational, computer-assisted enzyme engineering strategies. In this review, we provide an overview of the most relevant enzymes that are used for industrial applications and we discuss the strategies that are adopted to enhance enzyme stability and/or activity, along with some of the most relevant achievements. In all living species, many different enzymes catalyze fundamental chemical reactions with high substrate specificity and rate enhancements. Besides specificity, enzymes also possess many other favorable properties, such as, for instance, cost-effectiveness, good stability under mild pH and temperature conditions, generally low toxicity levels, and ease of termination of activity. As efficient natural biocatalysts, enzymes provide great opportunities to carry out important chemical reactions in several research and industrial settings, ranging from food to pharmaceutical, cosmetic, agricultural, and other crucial economic sectors

    Blood Lead Concentrations and Antibody Levels to Measles, Mumps, and Rubella among U.S. Children

    No full text
    Child blood lead concentrations have been associated with measures of immune dysregulation in nationally representative study samples. However, response to vaccination&mdash;often considered the gold standard in immunotoxicity testing&mdash;has not been examined in relation to typical background lead concentrations common among U.S. children. The present study estimated the association between blood lead concentrations and antigen-specific antibody levels to measles, mumps, and rubella in a nationally representative sample of 7005 U.S. children aged 6&ndash;17 years. Data from the 1999&ndash;2004 cycles of the National Health and Nutrition Examination Survey (NHANES) were used. In the adjusted models, children with blood lead concentrations between 1 and 5 &micro;g/dL had an 11% lower anti-measles (95% CI: &minus;16, &minus;5) and a 6% lower anti-mumps antibody level (95% CI: &minus;11, &minus;2) compared to children with blood lead concentrations &lt;1 &micro;g/dL. The odds of a seronegative anti-measles antibody level was approximately two-fold greater for children with blood lead concentrations between 1 and 5 &micro;g/dL compared to children with blood lead concentrations &lt;1 &micro;g/dL (OR = 2.0, 95% CI: 1.4, 3.1). The adverse associations observed in the present study provide further evidence of potential immunosuppression at blood lead concentrations &lt;5 &micro;g/dL, the present Centers for Disease Control and Prevention action level

    IL-18 mediates sickle cell cardiomyopathy and ventricular arrhythmias

    No full text
    Previous reports indicate that IL18 is a novel candidate gene for diastolic dysfunction in sickle cell disease (SCD)-related cardiomyopathy. We hypothesize that interleukin-18 (IL-18) mediates the development of cardiomyopathy and ventricular tachycardia (VT) in SCD. Compared with control mice, a humanized mouse model of SCD exhibited increased cardiac fibrosis, prolonged duration of action potential, higher VT inducibility in vivo, higher cardiac NF-κB phosphorylation, and higher circulating IL-18 levels, as well as reduced voltage-gated potassium channel expression, which translates to reduced transient outward potassium current (Ito) in isolated cardiomyocytes. Administering IL-18 to isolated mouse hearts resulted in VT originating from the right ventricle and further reduced Ito in SCD mouse cardiomyocytes. Sustained IL-18 inhibition via IL-18-binding protein resulted in decreased cardiac fibrosis and NF-κB phosphorylation, improved diastolic function, normalized electrical remodeling, and attenuated IL-18-mediated VT in SCD mice. Patients with SCD and either myocardial fibrosis or increased QTc displayed greater IL18 gene expression in peripheral blood mononuclear cells (PBMCs), and QTc was strongly correlated with plasma IL-18 levels. PBMC-derived IL18 gene expression was increased in patients who did not survive compared with those who did. IL-18 is a mediator of sickle cell cardiomyopathy and VT in mice and a novel therapeutic target in patients at risk for sudden death
    corecore