344 research outputs found

    Engineered Transcription Activator-Like Effector Dimer Proteins Confer DNA Loop-Dependent Gene Repression Comparable to Lac Repressor

    Get PDF
    Natural prokaryotic gene repression systems often exploit DNA looping to increase the local concentration of gene repressor proteins at a regulated promoter via contributions from repressor proteins bound at distant sites. Using principles from the Escherichia coli lac operon we design analogous repression systems based on target sequence-programmable Transcription Activator-Like Effector dimer (TALED) proteins. Such engineered switches may be valuable for synthetic biology and therapeutic applications. Previous TALEDs with inducible non-covalent dimerization showed detectable, but limited, DNA loop-based repression due to the repressor protein dimerization equilibrium. Here, we show robust DNA loop-dependent bacterial promoter repression by covalent TALEDs and verify that DNA looping dramatically enhances promoter repression in E. coli. We characterize repression using a thermodynamic model that quantitates this favorable contribution of DNA looping. This analysis unequivocally and quantitatively demonstrates that optimized TALED proteins can drive loop-dependent promoter repression in E. coli comparable to the natural LacI repressor system. This work elucidates key design principles that set the stage for wide application of TALED-dependent DNA loop-based repression of target genes

    DNM1 encephalopathy: A new disease of vesicle fission.

    Get PDF
    ObjectiveTo evaluate the phenotypic spectrum caused by mutations in dynamin 1 (DNM1), encoding the presynaptic protein DNM1, and to investigate possible genotype-phenotype correlations and predicted functional consequences based on structural modeling.MethodsWe reviewed phenotypic data of 21 patients (7 previously published) with DNM1 mutations. We compared mutation data to known functional data and undertook biomolecular modeling to assess the effect of the mutations on protein function.ResultsWe identified 19 patients with de novo mutations in DNM1 and a sibling pair who had an inherited mutation from a mosaic parent. Seven patients (33.3%) carried the recurrent p.Arg237Trp mutation. A common phenotype emerged that included severe to profound intellectual disability and muscular hypotonia in all patients and an epilepsy characterized by infantile spasms in 16 of 21 patients, frequently evolving into Lennox-Gastaut syndrome. Two patients had profound global developmental delay without seizures. In addition, we describe a single patient with normal development before the onset of a catastrophic epilepsy, consistent with febrile infection-related epilepsy syndrome at 4 years. All mutations cluster within the GTPase or middle domains, and structural modeling and existing functional data suggest a dominant-negative effect on DMN1 function.ConclusionsThe phenotypic spectrum of DNM1-related encephalopathy is relatively homogeneous, in contrast to many other genetic epilepsies. Up to one-third of patients carry the recurrent p.Arg237Trp variant, which is now one of the most common recurrent variants in epileptic encephalopathies identified to date. Given the predicted dominant-negative mechanism of this mutation, this variant presents a prime target for therapeutic intervention

    A comprehensive promoter landscape identifies a novel promoter for CD133 in restricted tissues, cancers, and stem cells

    Get PDF
    PROM1 is the gene encoding prominin-1 or CD133, an important cell surface marker for the isolation of both normal and cancer stem cells. PROM1 transcripts initiate at a range of transcription start sites (TSS) associated with distinct tissue and cancer expression profiles. Using high resolution Cap Analysis of Gene Expression (CAGE) sequencing we characterize TSS utilization across a broad range of normal and developmental tissues. We identify a novel proximal promoter (P6) within CD133+ melanoma cell lines and stem cells. Additional exon array sampling finds P6 to be active in populations enriched for mesenchyme, neural stem cells and within CD133+ enriched Ewing sarcomas. The P6 promoter is enriched with respect to previously characterized PROM1 promoters for a HMGI/Y (HMGA1) family transcription factor binding site motif and exhibits different epigenetic modifications relative to the canonical promoter region of PROM1

    Abstract 2689: Breast cancer inhibition by a novel and potent biguanide, N1-hexyl-N5-benzyl-biguanide

    Get PDF
    Abstract: Metformin is a widely used biguanide diabetes drug that is associated with decreased breast cancer risk and is currently being studied for treatment and prevention of breast cancer. While metformin and biguanides buformin and phenformin exhibit inhibitory activity against breast cancer in vitro and in vivo, they lack potency (IC50=5-20 mM) and their mechanisms of action remain unclear. More potent biguanides may provide insights into biguanide anti-cancer activity and we therefore studied the novel biguanide N1-hexyl-N5-benzyl-biguanide mesylate (HBB), which potently inhibits the MCF-7 and MDA-MB-231 breast cancer lines (IC50=20 uM for both lines). HBB induces AMPK phosphorylation in both lines at 10 uM concentration, whereas similarly dosed metformin, buformin or phenformin exhibits no activity. HBB also inhibits STAT3 phosphorylation at 10 uM concentration, whereas metformin dosed at 10 uM exhibits no activity. HBB reduced the mitochondrial membrane potential of both lines, but the effect was more prominent in the MDA-MB-231 line. HBB also induced ROS within 2.5 hours of exposure in the MCF-7 and MDA-MB-231 lines and caused rapid necrosis, but not apoptosis. N-acetylcysteine provides partial protection from HBB for MDA-231 line, but not the MCF-7 line. HBB provides proof of principle that highly potent biguanides can be synthesized with at least 250-fold greater potency than metformin, which can provide insights into the cancer inhibitory mechanisms of biguanide drugs. R01 CA113570, Randy Shaver Foundation, CTSI University of Minnesota Citation Format: Zhijun Guo, Kathryn J. Chavez, Juan Alvarez, Xia Zhang, Beverly Norris, Michael Maher, Monique Morgan, Robert J. Schumacher, Rebecca Cuellar, Irina F. Sevrioukova, Thomas L. Poulos, Ilia Denisov, Stephen G. Sligar, Kalpna Gupta, Ian A. Blair, Jorge Capdevila, Ameeta Kelekar, Elizabeth Amin, Gunda Georg, David A. Potter. Breast cancer inhibition by a novel and potent biguanide, N1-hexyl-N5-benzyl-biguanide. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2689. doi:10.1158/1538-7445.AM2014-268

    The histone deacetylase inhibitor, romidepsin, as a potential treatment for pulmonary fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a progressive disease that usually affects elderly people. It has a poor prognosis and there are limited therapies. Since epigenetic alterations are associated with IPF, histone deacetylase (HDAC) inhibitors offer a novel therapeutic strategy to address the unmet medical need. This study investigated the potential of romidepsin, an FDA-approved HDAC inhibitor, as an anti-fibrotic treatment and evaluated biomarkers of target engagement that may have utility in future clinical trials. The anti-fibrotic effects of romidepsin were evaluated both in vitro and in vivo together with any harmful effect on alveolar type II cells (ATII). Bronchoalveolar lavage fluid (BALF) from IPF or control donors was analyzed for the presence of lysyl oxidase (LOX). In parallel with an increase in histone acetylation, romidepsin potently inhibited fibroblast proliferation, myofibroblast differentiation and LOX expression. ATII cell numbers and their lamellar bodies were unaffected. In vivo, romidepsin inhibited bleomycin-induced pulmonary fibrosis in association with suppression of LOX expression. LOX was significantly elevated in BALF of IPF patients compared to controls. These data show the anti-fibrotic effects of romidepsin, supporting its potential use as novel treatment for IPF with LOX as a companion biomarker for evaluation of early on-target effects

    Analysis of Tumor Metabolism Reveals Mitochondrial Glucose Oxidation in Genetically Diverse Human Glioblastomas in the Mouse Brain In Vivo

    Get PDF
    SummaryDysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo

    Abstract 3568: CYP3A4 epoxygenase activity mediates ER+ mammary tumor growth and angiogenesis, in part, through EET biosynthesis and is inhibited by biguanides

    Get PDF
    Abstract: While cytochrome P450 enzymes (CYPs) are implicated in tumor angiogenesis through biosynthesis of epoxyeicosatrienoic acids (EETs), little is known about breast cancer cell-intrinsic CYPs that exhibit epoxygenase activity, such as CYP3A4. In an orthotopic breast cancer model, silencing of epithelial CYP3A4 suppressed angiogenesis-related escape of ER+ breast tumors from dormancy. While the diabetes drug metformin inhibits mitochondrial complex I and inhibits tumor growth, how it does so is unknown. Metformin inhibited CYP epoxygenase activity and co-crystallized in the active site of CYP3A4, hydrogen bonding with arginine 212, allowing the development of hexyl-benzyl-biguanide (HBB) as a CYP3A4 inhibitor using molecular modeling. HBB exhibited more than 10-fold greater potency than metformin for inhibition of ER+ mammary tumor growth and inhibited associated tumor angiogenesis. HBB inhibited EET biosynthesis ∼40-fold more potently than metformin and was ∼40-fold more potent for activation of AMPK phosphorylation. EETs suppressed and CYP silencing promoted AMPK phosphorylation, linking CYPs with AMPK regulation in breast cancer. HBB depolarized mitochondria, reduced oxygen consumption rates and suppressed the Warburg effect, while EETs restored the mitochondrial membrane potential. CYP3A4 silencing and HBB treatment increased reactive oxygen species (ROS) production, suggesting that CYPs suppress cancer cell death, in part, through suppression of ROS. CYP3A4 silencing sensitized breast cancer cells to hormonal therapy and chemotherapy, abrogated by EETs. Because EETs are autocrine, paracrine and endocrine, these results implicate CYPs in tumor growth, in part, through cell-cell mediation of mitochondrial homeostasis and demonstrate the potential of CYP3A4 as a therapeutic target in breast cancer. Citation Format: Zhijun Guo, Irina F. Sevrioukova, Eric Hanse, Ilia Denisov, Xia Zhang, Ting-Lan Chiu, Daniel Swedien, Justin Stamschror, Juan Alvarez, William Marerro Ortiz, Monique Morgan, Michael Maher, Kathryn J. Chavez, Dafydd Thomas, Young Kyung Bae, Jonathan Henriksen, Beverly Norris, Robert J. Schumacher, Henry Wang, Robin Bliss, Haitao Chu, Rebecca Cuellar, Thomas L. Poulos, Stephen G. Sligar, William Atkins, Stephen Schmechel, Jorge Capdevila, John Falck, Ian Blair, Jeffrey P. Jones, Gunda Georg, Kalpna Gupta, Ameeta Kelekar, Elizabeth Amin, David A. Potter. CYP3A4 epoxygenase activity mediates ER+ mammary tumor growth and angiogenesis, in part, through EET biosynthesis and is inhibited by biguanides. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 3568. doi:10.1158/1538-7445.AM2015-356
    • …
    corecore