29 research outputs found

    Coming Back Better: Leveraging Crisis-Response Task Forces to Advance Racial Equity and Worker Justice

    Get PDF
    As the United States enters its third year of navigating the global Covid-19 pandemic, the coronavirus continues to disrupt the lives of millions of workers and their families. About a quarter of the US workforce—nearly 41 million workers -- experienced at least one spell of unemployment due to the coronavirus. As of February 2022, some 3 million fewer people are employed than before the pandemic. While nearly all workers have been affected, yet these impacts are highly unequal: low-wage workers, Black workers, and other workers of color, particularly women of color, have experienced the greatest health and economic harms. This lop-sided labor market recovery has done little to buoy low-wage workers of color who continue to face heavy burdens in terms of rent debt and childcare access

    Hubble Space Telescope Near-IR Transmission Spectroscopy of the Super-Earth HD 97658b

    Get PDF
    Recent results from the Kepler mission indicate that super-Earths (planets with masses between 1-10 times that of the Earth) are the most common kind of planet around nearby Sun-like stars. These planets have no direct solar system analogue, and are currently one of the least well-understood classes of extrasolar planets. Many super-Earths have average densities that are consistent with a broad range of bulk compositions, including both water-dominated worlds and rocky planets covered by a thick hydrogen and helium atmosphere. Measurements of the transmission spectra of these planets offer the opportunity to resolve this degeneracy by directly constraining the scale heights and corresponding mean molecular weights of their atmospheres. We present Hubble Space Telescope near-infrared spectroscopy of two transits of the newly discovered transiting super-Earth HD 97658b. We use the Wide Field Camera 3's scanning mode to measure the wavelength-dependent transit depth in thirty individual bandpasses. Our averaged differential transmission spectrum has a median 1 sigma uncertainty of 23 ppm in individual bins, making this the most precise observation of an exoplanetary transmission spectrum obtained with WFC3 to date. Our data are inconsistent with a cloud-free solar metallicity atmosphere at the 10 sigma level. They are consistent at the 0.4 sigma level with a flat line model, as well as effectively flat models corresponding to a metal-rich atmosphere or a solar metallicity atmosphere with a cloud or haze layer located at pressures of 10 mbar or higher.Comment: ApJ in press; revised version includes an updated orbital ephemeris for the plane

    An HST/STIS Optical Transmission Spectrum of Warm Neptune GJ 436b

    Get PDF
    GJ 436b is a prime target for understanding warm Neptune exoplanet atmospheres and a target for multiple JWST GTO programs. Here, we report the first space-based optical transmission spectrum of the planet using two HST/STIS transit observations from 0.53-1.03 microns. We find no evidence for alkali absorption features, nor evidence of a scattering slope longward of 0.53 microns. The spectrum is indicative of moderate to high metallicity (~100-1000x solar) while moderate metallicity scenarios (~100x solar) require aerosol opacity. The optical spectrum also rules out some highly scattering haze models. We find an increase in transit depth around 0.8 microns in the transmission spectra of 3 different sub-Jovian exoplanets (GJ 436b, HAT-P-26b, and GJ 1214b). While most of the data come from STIS, data from three other instruments may indicate this is not an instrumental effect. Only the transit spectrum of GJ 1214b is well fit by a model with stellar plages on the photosphere of the host star. Our photometric monitoring of the host star reveals a stellar rotation rate of 44.1 days and an activity cycle of 7.4 years. Intriguingly, GJ 436 does not become redder as it gets dimmer, which is expected if star spots were dominating the variability. These insights into the nature of the GJ 436 system help refine our expectations for future observations in the era of JWST, whose higher precision and broader wavelength coverage will shed light on the composition and structure of GJ 436b's atmosphere.Comment: 20 pages, 11 figures, 5 tables, Accepted to AJ. A full version of table 1 is included as table1_mrt.tx

    Updated Parameters and a New Transmission Spectrum of HD 97658b

    Get PDF
    Recent years have seen increasing interest in the characterization of sub-Neptune-sized planets because of their prevalence in the Galaxy, contrasted with their absence in our solar system. HD 97658 is one of the brightest stars hosting a planet of this kind, and we present the transmission spectrum of this planet by combining four Hubble Space Telescope transits, 12 Spitzer/IRAC transits, and eight MOST transits of this system. Our transmission spectrum has a higher signal-to-noise ratio than those from previous works, and the result suggests that the slight increase in transit depth from wavelength 1.1–1.7 μm reported in previous works on the transmission spectrum of this planet is likely systematic. Nonetheless, our atmospheric modeling results are inconclusive, as no model provides an excellent match to our data. Nonetheless, we find that atmospheres with high C/O ratios (C/O ≳ 0.8) and metallicities of ≳100× solar metallicity are favored. We combine the mid-transit times from all of the new Spitzer and MOST observations and obtain an updated orbital period of P = 9.489295 ± 0.000005, with a best-fit transit time center at T₀ = 2456361.80690 ± 0.00038 (BJD). No transit timing variations are found in this system. We also present new measurements of the stellar rotation period (34 ± 2 days) and stellar activity cycle (9.6 yr) of the host star HD 97658. Finally, we calculate and rank the Transmission Spectroscopy Metric of all confirmed planets cooler than 1000 K and with sizes between 1 R⊕ and 4 R⊕. We find that at least a third of small planets cooler than 1000 K can be well characterized using James Webb Space Telescope, and of those, HD 97658b is ranked fifth, meaning that it remains a high-priority target for atmospheric characterization

    The Flat Transmission Spectrum of the Super-Earth GJ1214b from Wide Field Camera 3 on the Hubble Space Telescope

    Full text link
    Capitalizing on the observational advantage offered by its tiny M dwarf host, we present HST/WFC3 grism measurements of the transmission spectrum of the super-Earth exoplanet GJ1214b. These are the first published WFC3 observations of a transiting exoplanet atmosphere. After correcting for a ramp-like instrumental systematic, we achieve nearly photon-limited precision in these observations, finding the transmission spectrum of GJ1214b to be flat between 1.1 and 1.7 microns. Inconsistent with a cloud-free solar composition atmosphere at 8.2 sigma, the measured achromatic transit depth most likely implies a large mean molecular weight for GJ1214b's outer envelope. A dense atmosphere rules out bulk compositions for GJ1214b that explain its large radius by the presence of a very low density gas layer surrounding the planet. High-altitude clouds can alternatively explain the flat transmission spectrum, but they would need to be optically thick up to 10 mbar or consist of particles with a range of sizes approaching 1 micron in diameter.Comment: 17 pages, 12 figures, accepted for publication in Ap

    Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b

    Get PDF
    Results from the Kepler mission indicate that the occurrence rate of small planets (<3 R⊕) in the habitable zone of nearby low-mass stars may be as high as 80%. Despite this abundance, probing the conditions and atmospheric properties on any habitable-zone planet is extremely difficult and has remained elusive to date. Here, we report the detection of water vapor and the likely presence of liquid and icy water clouds in the atmosphere of the 2.6 R ⊕ habitable-zone planet K2-18b. The simultaneous detection of water vapor and clouds in the mid-atmosphere of K2-18b is particularly intriguing because K2-18b receives virtually the same amount of total insolation from its host star (1368^(+114)_(-107) W m⁻²) as the Earth receives from the Sun (1361 W m⁻²), resulting in the right conditions for water vapor to condense and explain the detected clouds. In this study we observed nine transits of K2-18b using Hubble Space Telescope/WFC3 in order to achieve the necessary sensitivity to detect the water vapor, and we supplement this data set with Spitzer and K2 observations to obtain a broader wavelength coverage. While the thick hydrogen-dominated envelope we detect on K2-18b means that the planet is not a true Earth analog, our observations demonstrate that low-mass habitable-zone planets with the right conditions for liquid water are accessible with state-of-the-art telescopes

    Water Vapor and Clouds on the Habitable-Zone Sub-Neptune Exoplanet K2-18b

    Full text link
    Results from the Kepler mission indicate that the occurrence rate of small planets (<3<3 RR_\oplus) in the habitable zone of nearby low-mass stars may be as high as 80%. Despite this abundance, probing the conditions and atmospheric properties on any habitable-zone planet is extremely difficult and has remained elusive to date. Here, we report the detection of water vapor and the likely presence of liquid and icy water clouds in the atmosphere of the 2.62.6 RR_\oplus habitable-zone planet K2-18b. The simultaneous detection of water vapor and clouds in the mid-atmosphere of K2-18b is particularly intriguing because K2-18b receives virtually the same amount of total insolation from its host star (1368107+1141368_{-107}^{+114} W m2^{-2}) as the Earth receives from the Sun (1361 W m2^{-2}), resulting in the right conditions for water vapor to condense and explain the detected clouds. In this study, we observed nine transits of K2-18b using HST/WFC3 in order to achieve the necessary sensitivity to detect the water vapor, and we supplement this data set with Spitzer and K2 observations to obtain a broader wavelength coverage. While the thick hydrogen-dominated envelope we detect on K2-18b means that the planet is not a true Earth analog, our observations demonstrate that low-mass habitable-zone planets with the right conditions for liquid water are accessible with state-of-the-art telescopes.Comment: Published in ApJL, includes important updates to stellar and planet parameter

    A sub-Neptune exoplanet with a low-metallicity methane-depleted atmosphere and Mie-scattering clouds

    Get PDF
    With no analogues in the Solar System, the discovery of thousands of exoplanets with masses and radii intermediate between Earth and Neptune was one of the big surprises of exoplanet science. These super-Earths and sub-Neptunes probably represent the most common outcome of planet formation. Mass and radius measurements indicate a diversity in bulk composition much wider than for gas giants; however, direct spectroscopic detections of molecular absorption and constraints on the gas mixing ratios have largely remained limited to planets more massive than Neptune. Here we analyse a combined Hubble/Spitzer Space Telescope dataset of 12 transits and 20 eclipses of the sub-Neptune exoplanet GJ 3470 b, whose mass of 12.6 M⊕ places it near the halfway point between previously studied Neptune-like exoplanets (22–23 M⊕) and exoplanets known to have rocky densities (7 M⊕). Obtained over many years, our dataset provides a robust detection of water absorption (>5σ) and a thermal emission detection from the lowest irradiated planet to date. We reveal a low-metallicity, hydrogen-dominated atmosphere similar to that of a gas giant, but strongly depleted in methane gas. The low metallicity (O/H = 0.2–18.0) sets important constraints on the potential planet formation processes at low masses as well as the subsequent accretion of solids. The low methane abundance indicates that methane is destroyed much more efficiently than previously predicted, suggesting that the CH_4/CO transition curve has to be revisited for close-in planets. Finally, we also find a sharp drop in the cloud opacity at 2–3 µm, characteristic of Mie scattering, which enables narrow constraints on the cloud particle size and makes GJ 3470 b a key target for mid-infrared characterization with the James Webb Space Telescope

    Expression profiling of formalin-fixed paraffin-embedded primary breast tumors using cancer-specific and whole genome gene panels on the DASL® platform

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cDNA-mediated Annealing, extension, Selection and Ligation (DASL) assay has become a suitable gene expression profiling system for degraded RNA from paraffin-embedded tissue. We examined assay characteristics and the performance of the DASL 502-gene Cancer Panel<sup>v1 </sup>(1.5K) and 24,526-gene panel (24K) platforms at differentiating nine human epidermal growth factor receptor 2- positive (HER2+) and 11 HER2-negative (HER2-) paraffin-embedded breast tumors.</p> <p>Methods</p> <p>Bland-Altman plots and Spearman correlations evaluated intra/inter-panel agreement of normalized expression values. Unequal-variance <it>t</it>-statistics tested for differences in expression levels between HER2 + and HER2 - tumors. Regulatory network analysis was performed using Metacore (GeneGo Inc., St. Joseph, MI).</p> <p>Results</p> <p>Technical replicate correlations ranged between 0.815-0.956 and 0.986-0.997 for the 1.5K and 24K panels, respectively. Inter-panel correlations of expression values for the common 498 genes across the two panels ranged between 0.485-0.573. Inter-panel correlations of expression values of 17 probes with base-pair sequence matches between the 1.5K and 24K panels ranged between 0.652-0.899. In both panels, <it>erythroblastic leukemia viral oncogene homolog 2 </it>(<it>ERBB2</it>) was the most differentially expressed gene between the HER2 + and HER2 - tumors and seven additional genes had p-values < 0.05 and log2 -fold changes > |0.5| in expression between HER2 + and HER2 - tumors: <it>topoisomerase II alpha </it>(<it>TOP2A</it>), <it>cyclin a2 </it>(<it>CCNA2</it>), <it>v-fos fbj murine osteosarcoma viral oncogene homolog </it>(<it>FOS</it>), <it>wingless-type mmtv integration site family, member 5a </it>(<it>WNT5A</it>), <it>growth factor receptor-bound protein </it><it>7 </it>(<it>GRB7</it>), <it>cell division cycle 2 </it>(<it>CDC2</it>), <it>and baculoviral iap repeat-containing protein 5 </it>(<it>BIRC5</it>). The top 52 discriminating probes from the 24K panel are enriched with genes belonging to the regulatory networks centered around <it>v-myc avian myelocytomatosis viral oncogene homolog </it>(<it>MYC</it>), <it>tumor protein p53 </it>(<it>TP53</it>), and <it>estrogen receptor α </it>(<it>ESR1</it>). Network analysis with a two-step extension also showed that the eight discriminating genes common to the 1.5K and 24K panels are functionally linked together through <it>MYC</it>, <it>TP53</it>, and <it>ESR1</it>.</p> <p>Conclusions</p> <p>The relative RNA abundance obtained from two highly differing density gene panels are correlated with eight common genes differentiating HER2 + and HER2 - breast tumors. Network analyses demonstrated biological consistency between the 1.5K and 24K gene panels.</p
    corecore