Recent results from the Kepler mission indicate that super-Earths (planets
with masses between 1-10 times that of the Earth) are the most common kind of
planet around nearby Sun-like stars. These planets have no direct solar system
analogue, and are currently one of the least well-understood classes of
extrasolar planets. Many super-Earths have average densities that are
consistent with a broad range of bulk compositions, including both
water-dominated worlds and rocky planets covered by a thick hydrogen and helium
atmosphere. Measurements of the transmission spectra of these planets offer the
opportunity to resolve this degeneracy by directly constraining the scale
heights and corresponding mean molecular weights of their atmospheres. We
present Hubble Space Telescope near-infrared spectroscopy of two transits of
the newly discovered transiting super-Earth HD 97658b. We use the Wide Field
Camera 3's scanning mode to measure the wavelength-dependent transit depth in
thirty individual bandpasses. Our averaged differential transmission spectrum
has a median 1 sigma uncertainty of 23 ppm in individual bins, making this the
most precise observation of an exoplanetary transmission spectrum obtained with
WFC3 to date. Our data are inconsistent with a cloud-free solar metallicity
atmosphere at the 10 sigma level. They are consistent at the 0.4 sigma level
with a flat line model, as well as effectively flat models corresponding to a
metal-rich atmosphere or a solar metallicity atmosphere with a cloud or haze
layer located at pressures of 10 mbar or higher.Comment: ApJ in press; revised version includes an updated orbital ephemeris
for the plane