8 research outputs found

    Antimicrobial Activity and Chemical Composition of the Essential Oils of Portuguese Foeniculum vulgare Fruits

    Get PDF
    The aim of this study was to investigate the chemical composition and antimicrobial activity of essential oils obtained by hydrodistillation from fruits of six fennel accessions collected from wild populations occurring in the centre and south of Portugal. Composition of essential oils was established by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The obtained yields of the essential oils were found to vary greatly in the range of 1.1 to 2.9% (v/w) and the chemical composition varied with the region of collection. A total of 16 compounds were identified. The main compounds were fenchone (16.9 – 34.7%), estragole (2.5 – 66.0%) and trans-anethole (7.9 – 77.7%). The percentages of these three main compounds were used to determine the relationship between the different oil samples and to group them into four different chemotypes: anethole/fenchone; anethole; estragole and anethole/estragole. Antifungal activity of essential oils was evaluated against six food spoilage fungi: Aspergillus niger, A. japonicus, A. oryzae, Fusarium oxysporum, Rhizophus oryzae and R. stolonifer. Antibacterial activity was assessed against three Gram-positive strains: Enterococcus faecalis ATCC 29212, Staphylococcus epidermidis ATCC 12228 and S. aureus ATCC 28213; and against six Gram-negative strains: Escherichia coli ATCC 25922; Morganella morganii LFG 08; Proteus mirabilis LFG 04; Salmonella enteritidis LFG 05; S. entiritidis serovar typhimurium LFG 06 and Pseudomonas aeruginosa ATCC 27853 by the disc diffusion agar method; the minimal inhibitory concentration (MIC) was determined using the broth macro-dilution method. The MIC values varied from 62.5 (E. coli ATCC 25922) to 2000 μg/mL (P. aeruginosa ATCC 27853)

    Cereal landraces genetic resources in worldwide GeneBanks. A review

    Get PDF
    Since the dawn of agriculture, cereal landraces have been the staples for food production worldwide, but their use dramatically declined in the 2nd half of the last century, replaced by modern cultivars. In most parts of the world, landraces are one of the most threatened components of agrobiodiversity, facing the risk of genetic erosion and extinction. Since landraces have a tremendous potential in the development of new cultivars adapted to changing environmental conditions, GeneBanks holding their genetic resources potentially play an important role in supporting sustainable agriculture. This work reviews the current knowledge on cereal landraces maintained in GeneBanks and highlights the strengths and weaknesses of existing information about their taxonomy, origin, structure, threats, sampling methodologies and conservation and GeneBanks’ documentation and management. An overview of major collections of cereal landraces is presented, using the information available in global metadatabase systems. This review on winter cereal landrace conservation focuses on: (1) traditional role of GeneBanks is evolving beyond their original purpose to conserve plant materials for breeding programmes. Today’s GeneBank users are interested in landraces’ history, agro-ecology and traditional knowledge associated with their use, in addition to germplasm traits. (2) GeneBanks therefore need to actively share their germplasm collections’ information using different channels, to promote unlimited and effective use of these materials for the further development of sustainable agriculture. (3) Access to information on the 7.4 million accessions conserved in GeneBanks worldwide, of which cereal accessions account for nearly 45 %, particularly information on cereal landraces (24 % of wheat, 23 % of barley, 14 % of oats and 29 % of rye accessions), is often not easily available to potential users, mainly due to the lack of consistent or compatible documentation systems, their structure and registration. (4) Enhancing the sustainable use of landraces maintained in germplasm collections through the effective application of recent advances in landrace knowledge (origin, structure and traits) and documentation using the internet tools and data providing networks, including the use of molecular and biotechnological tools for the material screening and detection of agronomic traits. (5) Cereal landraces cannot be exclusively conserved as seed samples maintained under ex situ conditions in GeneBanks. The enormous contribution of farmers in maintaining the crop and landraces diversity is recognised. Sharing of benefits and raising awareness of the value of cereal landraces are the most effective ways to promote their conservation and to ensure their continued availability and sustainable use. (6) Evaluation of costs and economic benefits attributed to sustainable use of cereal landraces conserved in the GeneBanks requires comprehensive studies conducted on a case-by-case basis, that take into consideration species/crop resources, conservation conditions and quality and GeneBank location and functions.This work was support by the European Community, through the INTERREG IIIB and MAC programmes, research projects Germobanco Agrícola da Macaronesia and AGRICOMAC. This paper was edited by Olga Spellman (Bioversity International)info:eu-repo/semantics/publishedVersio

    Management and sustainable use of medicinal and aromatic plants as a contribution to the valorisation of the rural areas: an ethnobotanical approach

    No full text
    For more than three decades the Portuguese Gene Bank (INRB.IP/BPVG) has been collecting, documenting, characterising and conserving biological diversity and plant genetic resources (PGR) of crops and species, which include medicinal and aromatic plants (MAP) traditionally used in Portugal. Over a four-year period, the BPVG and other 8 national partners were engaged in a broader research project (Agro 34) conducted in different Portuguese regions aiming to select MAP target taxa, considering important factors such as ecogeographic distribution, biological and sociocultural importance, genetic distinctiveness, potential economic use, threat of genetic erosion, current conservation status, traditional ecological knowledge (TEK) status, cost, feasibility and sustainability of the conservation and use, and particular/relevant contributions to rural development and local/regional subsistence

    Traditional varieties and associate produces: conserve to valorize.

    No full text
    Diversity is an important approach to plant genetic resources conservation. Landraces and farmer varieties are essential elements of agroecosystems. Several ethnobotanical surveys carried out in different Portuguese regions highlighted the importance of some agroecosystems and enhanced biological, cultural and heritage values of local knowledge, plant-use systems and traditional landscapes.Such importance and rich heritage are based in particular agricultural and wild crops well adapted to edaphic, climatic and productive conditions, as well as to social, economic and regional requirements. For decades, these species and crops have supplied people’ nutrition, and balanced diets, and have also ensured primary health care needs. They may not last if seeds, propagules, practices and traditional knowledge are not guaranteed.info:eu-repo/semantics/publishedVersio

    Cereal landraces for sustainable agriculture

    No full text
    Modern agriculture and conventional breeding and the liberal use of high inputs has resulted in the loss of genetic diversity and the stagnation of yields in cereals in less favourable areas. Increasingly landraces are being replaced by modern cultivars which are less resilient to pests, diseases and abiotic stresses and thereby losing a valuable source of germplasm for meeting the future needs of sustainable agriculture in the context of climate change. Where landraces persist there is concern that their potential is not fully realised. Much effort has gone into collecting, organising, studying and analysing landraces recently and we review the current status and potential for their improved deployment and exploitation, and incorporation of their positive qualities into new cultivars or populations for more sustainable agricultural production. In particular their potential as sources of novel disease and abiotic stress resistance genes or combination of genes if deployed appropriately, of phytonutrients accompanied with optimal micronutrient concentrations which can help alleviate aging-related and chronic diseases, and of nutrient use efficiency traits. We discuss the place of landraces in the origin of modern cereal crops and breeding of elite cereal cultivars, the importance of on-farm and ex situ diversity conservation; how modern genotyping approaches can help both conservation and exploitation; the importance of different phenotyping approaches; and whether legal issues associated with landrace marketing and utilisation need addressing. In this review of the current status and prospects for landraces of cereals in the context of sustainable agriculture, the major points are the following: (1) Landraces have very rich and complex ancestry representing variation in response to many diverse stresses and are vast resources for the development of future crops deriving many sustainable traits from their heritage. (2) There are many germplasm collections of landraces of the major cereals worldwide exhibiting much variation in valuable morphological, agronomic and biochemical traits. The germplasm has been characterised to variable degrees and in many different ways including molecular markers which can assist selection. (3) Much of this germplasm is being maintained both in long-term storage and on farm where it continues to evolve, both of which have their merits and problems. There is much concern about loss of variation, identification, description and accessibility of accessions despite international strategies for addressing these issues. (4) Developments in genotyping technologies are making the variation available in landraces ever more accessible. However, high quality, extensive and detailed, relevant and appropriate phenotyping needs to be associated with the genotyping to enable it to be exploited successfully. We also need to understand the complexity of the genetics of these desirable traits in order to develop new germplasm. (5) Nutrient use efficiency is a very important criterion for sustainability. Landrace material offers a potential source for crop improvement although these traits are highly interactive with their environment, particularly developmental stage, soil conditions and other organisms affecting roots and their environment. (6) Landraces are also a potential source of traits for improved nutrition of cereal crops, particularly antioxidants, phenolics in general, carotenoids and tocol in particular. They also have the potential to improve mineral content, particularly iron and zinc, if these traits can be successfully transferred to improved varieties. (7) Landraces have been shown to be valuable sources of resistance to pathogens and there is more to be gained from such sources. There is also potential, largely unrealised, for disease tolerance and resistance or tolerance of pest and various abiotic stresses too including to toxic environments. (8) Single gene traits are generally easily transferred from landrace germplasm to modern cultivars, but most of the desirable traits characteristic of landraces are complex and difficult to express in different genetic backgrounds. Maintaining these characteristics in heterogeneous landraces is also problematic. Breeding, selection and deployment methods appropriate to these objectives should be used rather than those used for high input intensive agriculture plant breeding. (9) Participatory plant breeding and variety selection has proven more successful than the approach used in high input breeding programmes for landrace improvement in stress-prone environments where sustainable approaches are a high priority. Despite being more complex to carry out, it not only delivers improved germplasm, but also aids uptake and communication between farmers, researchers and advisors for the benefit of all. (10) Previous seed trade legislation was designed primarily to protect trade and return royalty income to modern plant breeders with expensive programmes to fund. As the desirability of using landraces becomes more apparent to achieve greater sustainability, legislation changes are being made to facilitate this trade too. However, more changes are needed to promote the exploitation of diversity in landraces and encourage their use. © 2011 Springer Science+Business Media B.V
    corecore