2,114 research outputs found

    A model for luminescence of localized state ensemble

    Full text link
    A distribution function for localized carriers, f(E,T)=1e(E−Ea)/kBT+τtr/τrf(E,T)=\frac{1}{e^{(E-E_a)/k_BT}+\tau_{tr}/\tau_r}, is proposed by solving a rate equation, in which, electrical carriers' generation, thermal escape, recapture and radiative recombination are taken into account. Based on this distribution function, a model is developed for luminescence from localized state ensemble with a Gaussian-type density of states. The model reproduces quantitatively all the anomalous temperature behaviors of localized state luminescence. It reduces to the well-known band-tail and luminescence quenching models under certain approximations.Comment: 14 pages, 4 figure

    Bichiral structure of feroelectric domain wall driven by flexoelectricity

    Get PDF
    The influence of flexoelectric coupling on the internal structure of neutral domain walls in tetragonal phase of perovskite ferroelectrics is studied. The effect is shown to lower the symmetry of 180-degree walls which are oblique with respect to the cubic crystallographic axes, while {100} and {110} walls stay "untouched". Being of the Ising type in the absence of the flexoelectric interaction, the oblique domain walls acquire a new polarization component with a structure qualitatively different from the classical Bloch-wall structure. In contrast to the Bloch-type walls, where the polarization vector draws a helix on passing from one domain to the other, in the flexoeffect-affected wall, the polarization rotates in opposite directions on the two sides of the wall and passes through zero in its center. Since the resulting polarization profile is invariant upon inversion with respect to the wall center it does not brake the wall symmetry in contrast to the classical Bloch-type walls. The flexoelectric coupling lower the domain wall energy and gives rise to its additional anisotropy that is comparable to that conditioned by the elastic anisotropy. The atomic orderof- magnitude estimates shows that the new polarization component P2 may be comparable with spontaneous polarization Ps, thus suggesting that, in general, the flexoelectric coupling should be mandatory included in domain wall simulations in ferroelectrics. Calculations performed for barium titanate yields the maximal value of the P2, which is much smaller than that of the spontaneous polarization. This smallness is attributed to an anomalously small value of a component of the "strain-polarization" elecrostictive tensor in this material

    Impact of the tip radius on the lateral resolution in piezoresponse force microscopy

    Full text link
    We present a quantitative investigation of the impact of tip radius as well as sample type and thickness on the lateral resolution in piezoresponse force microscopy (PFM) investigating bulk single crystals. The observed linear dependence of the width of the domain wall on the tip radius as well as the independence of the lateral resolution on the specific crystal-type are validated by a simple theoretical model. Using a Ti-Pt-coated tip with a nominal radius of 15 nm the so far highest lateral resolution in bulk crystals of only 17 nm was obtained

    Direct mass measurements beyond the proton drip-line

    Get PDF
    First on-line mass measurements were performed at the SHIPTRAP Penning trap mass spectrometer. The masses of 18 neutron-deficient isotopes in the terbium-to-thulium region produced in fusion-evaporation reactions were determined with relative uncertainties of about 7⋅10−87\cdot 10^{-8}, nine of them for the first time. Four nuclides (144,145^{144, 145}Ho and 147,148^{147, 148}Tm) were found to be proton-unbound. The implication of the results on the location of the proton drip-line is discussed by analyzing the one-proton separation energies

    Mass measurements of very neutron-deficient Mo and Tc isotopes and their impact on rp process nucleosynthesis

    Get PDF
    The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.Comment: Link to online abstract: http://link.aps.org/doi/10.1103/PhysRevLett.106.12250

    Finite size and intrinsic field effect on the polar-active properties of the ferroelectric-semiconductor heterostructures

    Full text link
    Using Landau-Ginzburg-Devonshire approach we calculated the equilibrium distributions of electric field, polarization and space charge in the ferroelectric-semiconductor heterostructures containing proper or incipient ferroelectric thin films. The role of the polarization gradient and intrinsic surface energy, interface dipoles and free charges on polarization dynamics are specifically explored. The intrinsic field effects, which originated at the ferroelectric-semiconductor interface, lead to the surface band bending and result into the formation of depletion space-charge layer near the semiconductor surface. During the local polarization reversal (caused by the inhomogeneous electric field induced by the nanosized tip of the Scanning Probe Microscope (SPM) probe) the thickness and charge of the interface layer drastically changes, it particular the sign of the screening carriers is determined by the polarization direction. Obtained analytical solutions could be extended to analyze polarization-mediated electronic transport.Comment: 35 pages, 12 figures, 1 table, 2 appendices, to be submitted to Phys. Rev.

    Local probing of ionic diffusion by electrochemical strain microscopy: spatial resolution and signal formation mechanisms

    Full text link
    Electrochemical insertion-deintercalation reactions are typically associated with significant change of molar volume of the host compound. This strong coupling between ionic currents and strains underpins image formation mechanisms in electrochemical strain microscopy (ESM), and allows exploring the tip-induced electrochemical processes locally. Here we analyze the signal formation mechanism in ESM, and develop the analytical description of operation in frequency and time domains. The ESM spectroscopic modes are compared to classical electrochemical methods including potentiostatic and galvanostatic intermittent titration (PITT and GITT), and electrochemical impedance spectroscopy (EIS). This analysis illustrates the feasibility of spatially resolved studies of Li-ion dynamics on the sub-10 nanometer level using electromechanical detection.Comment: 49 pages, 17 figures, 4 tables, 3 appendices, to be submitted to J. Appl. Phys
    • 

    corecore