Using Landau-Ginzburg-Devonshire approach we calculated the equilibrium
distributions of electric field, polarization and space charge in the
ferroelectric-semiconductor heterostructures containing proper or incipient
ferroelectric thin films. The role of the polarization gradient and intrinsic
surface energy, interface dipoles and free charges on polarization dynamics are
specifically explored. The intrinsic field effects, which originated at the
ferroelectric-semiconductor interface, lead to the surface band bending and
result into the formation of depletion space-charge layer near the
semiconductor surface. During the local polarization reversal (caused by the
inhomogeneous electric field induced by the nanosized tip of the Scanning Probe
Microscope (SPM) probe) the thickness and charge of the interface layer
drastically changes, it particular the sign of the screening carriers is
determined by the polarization direction. Obtained analytical solutions could
be extended to analyze polarization-mediated electronic transport.Comment: 35 pages, 12 figures, 1 table, 2 appendices, to be submitted to Phys.
Rev.