1,013 research outputs found

    Governance Structure Transforemation during ERP Implementations

    Get PDF
    The United States Air Force (USAF) has a number of initiatives underway to better support tomorrow’s Warfighter. As part of the Expeditionary Logistics for the 21st Century (eLog21) campaign, one of the most critical initiatives is the Expeditionary Combat Support System (ECSS). ECSS is the world’s largest enterprise resource planning (ERP) implementation and will completely transform USAF logistics operations. The benefits of an ERP include centrally-managed and integrated information sharing, while the many challenges include training future state operations and employing change management. An effective governance structure is essential in order for the USAF to realize the full benefits of ECSS and minimize the challenges of ERP implementation. Governance is the means by which decisions are made and how decision-makers are held accountable for those decisions. This case study research examines the changes that five organizations made to their governance structure during a large transformation effort, such as an ERP implementation. Specifically, this research examines the main trigger points, or causes of these governance structure changes. The implications of these trigger points and changes to the governance structure are explored within the context of the current ECSS implementation

    Preliminary research on the effects of freezing on sugar concentrations of artificial sap

    Get PDF
    Native Americans were one of the first people to harvest maple sap to make maple syrup or sugar. Three historically referenced methods that they used to accomplish this was by freezing, stone boiling, and direct fire (Holman Egan, 1985). Native Americans would make an incision in the bark of a maple tree and then collect the sap in a birch container; the sap would then be boiled by either of the first two methods or frozen. When frozen, the ice that formed on top of the sap would be thrown out and the concentrated sap would be collected for boiling into the final product (Holman Egan, 1985). In our own local maple syrup production at Saint John’s University, when a layer of ice forms on sap it may occasionally be discarded; we wanted to determine what, if any, maple syrup loss results from this. In our experiment we tested the freezing method implemented by Native Americans

    Benchmarking calculations of excitonic couplings between bacteriochlorophylls

    Full text link
    Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution against computationally optimizing a crystal structure before calculating couplings, as it can lead to large, uncontrollable errors. Understanding the unavoidable uncertainties can guard against striving for unrealistic precision; at the same time, detailed benchmarks can allow important qualitative questions--which do not depend on the precise values of the simulation parameters--to be addressed with greater confidence about the conclusions

    Exploring the Use of Radar for Physically-Based Nowcasting of Lightning Cessation

    Get PDF
    NASA's Marshall Space Flight Center and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically-based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms driven primarily by trending in the actual total lightning flash rate, we believe that dual polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and ice-microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can propagation phase-based ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature was encompassed in the period of the polarimetric negative phase shift signature. To the extent this behavior is repeatable in other cases, even if only in a substantial fraction of those cases, the analysis suggests that differential propagation phase may prove to be a useful parameter for future lightning cessation algorithms. Indeed, a preliminary analysis of 15+ cases has shown additional indications of the weakening and disappearance of this ice alignment signature with lightning cessation. A summary of these case-study results is presented

    Using the VAHIRR Radar Algorithm to Investigate Lightning Cessation

    Get PDF
    Accurately determining the threat posed by lightning is a major area for improved operational forecasts. Most efforts have focused on the initiation of lightning within a storm, with far less effort spent investigating lightning cessation. Understanding both components, initiation and cessation, are vital to improving lightning safety. Few organizations actively forecast lightning onset or cessation. One such organization is the 45th Weather Squadron (45WS) for the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45WS has identified that charged anvil clouds remain a major threat of continued lightning and can greatly extend the window of a potential lightning strike. Furthermore, no discernable trend of total lightning activity has been observed consistently for all storms. This highlights the need for more research to find a robust method of knowing when a storm will cease producing lightning. Previous lightning cessation work has primarily focused on forecasting the cessation of cloud-to -ground lightning only. A more recent, statistical study involved total lightning (both cloud-to-ground and intracloud). Each of these previous works has helped the 45WS take steps forward in creating improved and ultimately safer lightning cessation forecasts. Each study has either relied on radar data or recommended increased use of radar data to improve cessation forecasts. The reasoning is that radar data is able to either directly or by proxy infer more about dynamical environment leading to cloud electrification and eventually lightning cessation. The authors of this project are focusing on a two ]step approach to better incorporate radar data and total lightning to improve cessation forecasts. This project will utilize the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) algorithm originally developed during the Airborne Field Mill II (ABFM II) research project. During the project, the VAHIRR product showed a trend of increasing values with increases in the electric field magnitude above 3 kV/m. An extreme value analysis showed that VAHIRR values less than or equal to 10 dBZ-km showed that the probability of having an electric field magnitude larger than 3 kV/m was less than one in ten thousand. VAHIRR also was found to be sensitive at indicating anvil clouds that posed a threat of initiating a lightning flash. This project seeks to use VAHIRR to analyze its utility as a lightning cessation tool, particularly dealing with the threat posed by detached anvils. The results from this project will serve as a baseline effectiveness of radar ]based lightning cessation algorithms. This baseline will be used in the second, and concurrent work by the co ]author fs who are developing a lightning cessation algorithm based on dual ]polarimetric radar data. Ultimately, an accurate method for identifying lightning cessation can save money on lost manpower time as well as greatly improve lightning safety

    Integration of the Total Lightning Jump Algorithm into Current Operational Warning Environment Conceptual Models

    Get PDF
    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. In order to become a viable option for operational forecasters to incorporate into their severe storm monitoring process, the total lightning jump must be placed into the framework of several severe storm conceptual models (e.g., radar evolution, storm morphology) which forecasters have built through training and experience. Thus, one of the goals of this study is to examine and relate the lightning jump concept to often used radar parameters (e.g., dBZ vertical structure, VIL, MESH, MESO/shear) in the warning environment. Tying lightning trends and lightning jump occurrences to these radar based parameters will provide forecasters with an additional tool that they can use to build an accurate realtime depiction as to what is going on in a given environment. Furthermore, relating the lightning jump concept to these parameters could also increase confidence in a warning decision they have already made, help tip the scales on whether or not to warn on a given storm, or to draw the forecaster s attention to a particular storm that is rapidly developing. Furthermore the lightning information will add vital storm scale information in regions that are not well covered by radar, or when radar failures occur. The physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relation to updraft strength, updraft volume, precipitation -sized ice mass, etc.; however, very few have related the concept of the lightning jump and manifestation of severe weather to storm dynamics and microphysics using multi -Doppler and polarimetric radar techniques. Therefore, the second half of this study will combine the lightning jump algorithm and these radar techniques in order to place the lightning jump concept into a physical and dynamical framework. This analysis includes examining such parameters as mixed phase precipitation volume, charging zone, updraft strength and updraft volume. Such a study should provide increased understanding of and confidence in the strengths and limitations of the lightning jump algorithm in the storm warning process

    Upside-down fluxes Down Under: CO2 net sink in winter and net source in summer in a temperate evergreen broadleaf forest

    Get PDF
    Predicting the seasonal dynamics of ecosystem carbon fluxes is challenging in broadleaved evergreen forests because of their moderate climates and subtle changes in canopy phenology. We assessed the climatic and biotic drivers of the seasonality of net ecosystem–atmosphere CO2 exchange (NEE) of a eucalyptus-dominated forest near Sydney, Australia, using the eddy covariance method. The climate is characterised by a mean annual precipitation of 800mm and a mean annual temperature of 18°C, hot summers and mild winters, with highly variable precipitation. In the 4-year study, the ecosystem was a sink each year (−225gCm−2yr−1 on average, with a standard deviation of 108gCm−2yr−1); inter-annual variations were not related to meteorological conditions. Daily net C uptake was always detected during the cooler, drier winter months (June through August), while net C loss occurred during the warmer, wetter summer months (December through February). Gross primary productivity (GPP) seasonality was low, despite longer days with higher light intensity in summer, because vapour pressure deficit (D) and air temperature (Ta) restricted surface conductance during summer while winter temperatures were still high enough to support photosynthesis. Maximum GPP during ideal environmental conditions was significantly correlated with remotely sensed enhanced vegetation index (EVI; r2 = 0.46) and with canopy leaf area index (LAI; r2= 0.29), which increased rapidly after mid-summer rainfall events. Ecosystem respiration (ER) was highest during summer in wet soils and lowest during winter months. ER had larger seasonal amplitude compared to GPP, and therefore drove the seasonal variation of NEE. Because summer carbon uptake may become increasingly limited by atmospheric demand and high temperature, and because ecosystem respiration could be enhanced by rising temperatures, our results suggest the potential for large-scale seasonal shifts in NEE in sclerophyll vegetation under climate change.The Australian Education Investment Fund, Australian Terrestrial Ecosystem Research Network, Australian Research Council and Hawkesbury Institute for the Environment at Western Sydney University supported this work. We thank Jason Beringer, Helen Cleugh, Ray Leuning and Eva van Gorsel for advice and support. Senani Karunaratne provided soil classification details

    How To Make A Pie: Reproducible Research for Empirical Economics & Econometrics

    Get PDF
    Empirical economics and econometrics (EEE) research now relies primarily on the application of code to datasets. Handling the workflow linking datasets, programs, results and finally manuscript(s) is essential if one wish to reproduce results, which is now increasingly required by journals and institutions. We underline here the importance of “reproducible research” in EEE and suggest three simple principles to follow. We illustrate these principles with good habits and tools, with particular focus on their implementation in most popular software and languages in applied economics
    • 

    corecore