14 research outputs found

    Serum-free microcarrier based production of replication deficient Influenza vaccine candidate virus lacking NS1 using Vero cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1) gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described.</p> <p>Results</p> <p>Five commercially available animal-component free, serum-free media (SFM) were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log<sub>10 </sub>TCID<sub>50</sub>/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log<sub>10 </sub>TCID<sub>50</sub>/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log<sub>10 </sub>TCID<sub>50</sub>/ml were achieved.</p> <p>Conclusions</p> <p>We describe for the first time the production of Influenza viruses using Vero cells in commercially available animal-component free, serum-free medium. This work can be used as a basis for efficient production of attenuated as well as wild type Influenza virus for research and vaccine production.</p

    Sublingual Immunization with a Live Attenuated Influenza A Virus Lacking the Nonstructural Protein 1 Induces Broad Protective Immunity in Mice

    Get PDF
    The nonstructural protein 1 (NS1) of influenza A virus (IAV) enables the virus to disarm the host cell type 1 IFN defense system. Mutation or deletion of the NS1 gene leads to attenuation of the virus and enhances host antiviral response making such live-attenuated influenza viruses attractive vaccine candidates. Sublingual (SL) immunization with live influenza virus has been found to be safe and effective for inducing protective immune responses in mucosal and systemic compartments. Here we demonstrate that SL immunization with NS1 deleted IAV (DeltaNS1 H1N1 or DeltaNS1 H5N1) induced protection against challenge with homologous as well as heterosubtypic influenza viruses. Protection was comparable with that induced by intranasal (IN) immunization and was associated with high levels of virus-specific antibodies (Abs). SL immunization with DeltaNS1 virus induced broad Ab responses in mucosal and systemic compartments and stimulated immune cells in mucosa-associated and systemic lymphoid organs. Thus, SL immunization with DeltaNS1 offers a novel potential vaccination strategy for the control of influenza outbreaks including pandemics

    Serum-free microcarrier based production of replication deficient Influenza vaccine candidate virus lacking NS1 using Vero cells

    No full text
    Abstract Background Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1) gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described. Results Five commercially available animal-component free, serum-free media (SFM) were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log10 TCID50/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log10 TCID50/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log10 TCID50/ml were achieved. Conclusions We describe for the first time the production of Influenza viruses using Vero cells in commercially available animal-component free, serum-free medium. This work can be used as a basis for efficient production of attenuated as well as wild type Influenza virus for research and vaccine production.</p

    SL immunization with DelNS1 vaccine activates mucosal and extramucosal CD4+ T cells.

    No full text
    <p>CFSE-labeled CD4<sup>+</sup> T cells from HA-TCR transgenic mice were adoptively transferred into naïve mice. One day later, recipients were given SL 2×10<sup>7</sup> pfu of Delta H1N1, 2×10<sup>5</sup> pfu of mouse-adapted wt live or 40 µg of formalin-inactivated A/PR8. Three days after the immunization, proliferating (CFSE stained) HA-TCR CD4<sup>+</sup> T cells were detected in cervical lymph nodes (CLN), lungs, mediastinal lymph nodes (MdLN) and spleens by FACS analysis. The data are representative of two experiments showing similar results.</p

    A novel type of influenza vaccine: safety and immunogenicity of replication-deficient influenza virus created by deletion of the interferon antagonist NS1.

    No full text
    BACKGROUND. The nonstructural protein NS1 of influenza virus counteracts the interferon-mediated immune response of the host. By deleting the open reading frame of NS1, we have generated a novel type of influenza vaccine. We studied the safety and immunogenicity of an influenza strain lacking the NS1 gene (DeltaNS1-H1N1) in healthy volunteers. METHODS. Healthy seronegative adult volunteers were randomized to receive either a single intranasal dose of the DeltaNS1-H1N1 A/New Caledonia vaccine at 1 of 5 dose levels (6.4, 6.7, 7.0, 7.4, and 7.7 log(10) median tissue culture infective dose) (n = 36 recipients) or placebo (n = 12 recipients). RESULTS. Intranasal vaccination with the replication-deficient DeltaNS1-H1N1 vaccine was well tolerated. Rhinitis-like symptoms and headache were the most common adverse events identified during the 28-day observation period. Adverse events were similarly distributed between the treatment and placebo groups. Vaccine-specific local and serum antibodies were induced in a dose-dependent manner. In the highest dose group, vaccine-specific antibodies were detected in 10 of 12 volunteers. Importantly, the vaccine also induced neutralizing antibodies against heterologous drift variants. CONCLUSIONS. We show that vaccination with an influenza virus strain lacking the viral interferon antagonist NS1 induces statistically significant levels of strain-specific and cross-neutralizing antibodies despite the highly attenuated replication-deficient phenotype. Further studies are warranted to determine whether these results translate into protection from influenza virus infection. TRIAL REGISTRATION. ClinicalTrials.gov identifier: NCT00724997

    Levels of virus-specific IgA induced in mucosal and systemic compartments upon immunization with DeltaNS1 IAV.

    No full text
    <p>BALB/c mice were immunized as described in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039921#pone-0039921-g006" target="_blank">Figure 6</a>. Four weeks later, titers of H1N1 (A/PR8) virus-specific IgA in sera and secretions were determined by ELISA. The values represent mean + SEM ELISA titers determined on groups of 5 mice.</p

    Levels of virus-specific IgG induced in mucosal and systemic compartments upon immunization with DeltaNS1 IAV.

    No full text
    <p>BALB/c mice were immunized with different doses of Delta H1N1 (▴ H1N1) or wt live virus A/PR8/34 (PR8) H1N1 (WT) via the sublingual (SL) or intranasal (IN) route. Four weeks later, titers of H1N1 (A/PR8) virus-specific IgG in sera and secretions were determined by ELISA. The values represent mean + SEM ELISA titers determined on groups of 5 mice.</p
    corecore