7 research outputs found

    MicroHerramientas para el Estudio de Células Vivas

    Get PDF
    La mayoría de las técnicas actuales para el estudio celular se basan en el análisis de poblaciones celulares y proporcionan resultados que corresponden a valores promedio de toda la población. Sin embargo, multitud de estudios indican la existencia de una variabilidad substancial entre células fenotípicamente similares, y evidencian la necesidad de disponer de sistemas adecuados para el estudio de células individuales. Esta necesidad ha motivado la aparición de trabajos interdisciplinarios entre el campo de la biología y otras áreas de conocimiento como la microelectrónica, que permite desarrollar estructuras y dispositivos tridimensionales con formas complejas a micro y nanoescala. Este trabajo se enmarca dentro de un proyecto de investigación más amplio que tiene como objetivo principal diseñar y fabricar BioMEMS (sistemas microelectromecánicos para aplicaciones biológicas) que permitan el estudio individualizado de células vivas desde su interior o su exterior. Estos dispositivos, en el futuro, deberán ser capaces de llevar a cabo diversas funciones, detectar parámetros celulares y actuar en consecuencia. Los estudios realizados en este trabajo corresponden a la fase inicial del proyecto, y pretenden sentar las bases para el desarrollo de BioMEMS de tamaño subcelular que puedan ser interiorizados en células para aplicaciones en célula única viva. Basándonos en este objetivo principal, se seleccionó el silicio como material apropiado para la fabricación de MEMS y biocompatible en condiciones extracelulares. Utilizando líneas celulares establecidas en cultivo con capacidad fagocítica, se analizó la vía de interiorización, el destino intracelular y la citotoxicidad de micropartículas con base de silicio fabricadas mediante técnicas de la industria microelectrónica. Como prueba definitiva, el efecto citotóxico de estas partículas en el interior celular también se evaluó utilizando embriones de ratón en estadio preimplantacional, extremadamente sensibles a cualquier alteración. Una vez validado el material, como primera aplicación y para demostrar la utilidad de estos dispositivos en estudios de célula única viva, nos propusimos diseñar un sistema de etiquetaje individual de células. Se diseñaron micropartículas que integraban unidades de información básica, y mediante este sistema fue posible etiquetar y trazar células vivas en cultivo con capacidad fagocítica. Finalmente, con tal de poder hacer extensiva esta aplicación a cualquier tipo celular, se optimizó un sistema de modificación química de la superficie de estas micropartículas con moléculas específicas (anticuerpos y lectinas). Las micropartículas modificadas se utilizaron para etiquetar y seguir células vivas e cultivo sin capacidad fagocítica. En el futuro, la utilización del sistema de modificación química de micropartículas desarrollado en el presente trabajo abre la posibilidad de dirigir los dispositivos hacia estructuras celulares concretas (membrana plasmática, núcleo, etc.) pero también de usarlos para la detección de moléculas específicas presentes en las células (por ejemplo la activación de caspasas, el incremento de ROS o las variaciones de concentración de Ca2+). Los resultados obtenidos, por lo tanto, abren una nueva vía de investigación prometedora, significan un progreso en el campo de estudio de los BioMEMS, y son la base para el diseño de futuros dispositivos intracelulares para el análisis de parámetros en célula única in situ

    Influence of nanomaterial compatibilization strategies on polyamide nanocomposites properties and nanomaterial release during the use phase

    No full text
    et al.The incorporation of small amounts of nanofillers in polymeric matrices has enabled new applications in several industrial sectors. The nanofiller dispersion can be improved by modifying the nanomaterial (NM) surface or predispersing the NMs to enhance compatibility. This study evaluates the effect of these compatibilization strategies on migration/release of the nanofiller and transformation of polyamide-6 (PA6), a thermoplastic polymer widely used in industry during simulated outdoors use. Two nanocomposites (NCs) containing SiO2 nanoparticles (NPs) with different surface properties and two multiwalled carbon nanotube (MWCNT) NCs obtained by different addition methods were produced and characterized, before and after accelerated wet aging conditions. Octyl-modified SiO2 NPs, though initially more aggregated than uncoated SiO2 NPs, reduced PA6 hydrolysis and, consequently, NM release. Although no clear differences in dispersion were observed between the two types of MWCNT NCs (masterbatch vs direct addition) after manufacture, the use of the MWCNT masterbatch reduced PA6 degradation during aging, preventing MWCNT accumulation on the surface and further release or potential exposure by direct contact. The amounts of NM released were lower for MWCNTs (36 and 108 mg/m2) than for SiO2 NPs (167 and 730 mg/m2), being lower in those samples where the NC was designed to improve the nanofiller–matrix interaction. Hence, this study shows that optimal compatibilization between NM and matrix can improve NC performance, reducing polymer degradation and exposure and/or release of the nanofiller.This work has been supported by the Generalitat de Catalunya, Departament d’Innovacio, Universitat i Empresa, and by the Spanish Government, Ministerio de Ciencia e Innovacion.Peer Reviewe

    MicroHerramientas para el Estudio de Células Vivas

    Get PDF
    La mayoría de las técnicas actuales para el estudio celular se basan en el análisis de poblaciones celulares y proporcionan resultados que corresponden a valores promedio de toda la población. Sin embargo, multitud de estudios indican la existencia de una variabilidad substancial entre células fenotípicamente similares, y evidencian la necesidad de disponer de sistemas adecuados para el estudio de células individuales. Esta necesidad ha motivado la aparición de trabajos interdisciplinarios entre el campo de la biología y otras áreas de conocimiento como la microelectrónica, que permite desarrollar estructuras y dispositivos tridimensionales con formas complejas a micro y nanoescala. Este trabajo se enmarca dentro de un proyecto de investigación más amplio que tiene como objetivo principal diseñar y fabricar BioMEMS (sistemas microelectromecánicos para aplicaciones biológicas) que permitan el estudio individualizado de células vivas desde su interior o su exterior. Estos dispositivos, en el futuro, deberán ser capaces de llevar a cabo diversas funciones, detectar parámetros celulares y actuar en consecuencia. Los estudios realizados en este trabajo corresponden a la fase inicial del proyecto, y pretenden sentar las bases para el desarrollo de BioMEMS de tamaño subcelular que puedan ser interiorizados en células para aplicaciones en célula única viva. Basándonos en este objetivo principal, se seleccionó el silicio como material apropiado para la fabricación de MEMS y biocompatible en condiciones extracelulares. Utilizando líneas celulares establecidas en cultivo con capacidad fagocítica, se analizó la vía de interiorización, el destino intracelular y la citotoxicidad de micropartículas con base de silicio fabricadas mediante técnicas de la industria microelectrónica. Como prueba definitiva, el efecto citotóxico de estas partículas en el interior celular también se evaluó utilizando embriones de ratón en estadio preimplantacional, extremadamente sensibles a cualquier alteración. Una vez validado el material, como primera aplicación y para demostrar la utilidad de estos dispositivos en estudios de célula única viva, nos propusimos diseñar un sistema de etiquetaje individual de células. Se diseñaron micropartículas que integraban unidades de información básica, y mediante este sistema fue posible etiquetar y trazar células vivas en cultivo con capacidad fagocítica. Finalmente, con tal de poder hacer extensiva esta aplicación a cualquier tipo celular, se optimizó un sistema de modificación química de la superficie de estas micropartículas con moléculas específicas (anticuerpos y lectinas). Las micropartículas modificadas se utilizaron para etiquetar y seguir células vivas e cultivo sin capacidad fagocítica. En el futuro, la utilización del sistema de modificación química de micropartículas desarrollado en el presente trabajo abre la posibilidad de dirigir los dispositivos hacia estructuras celulares concretas (membrana plasmática, núcleo, etc.) pero también de usarlos para la detección de moléculas específicas presentes en las células (por ejemplo la activación de caspasas, el incremento de ROS o las variaciones de concentración de Ca2+). Los resultados obtenidos, por lo tanto, abren una nueva vía de investigación prometedora, significan un progreso en el campo de estudio de los BioMEMS, y son la base para el diseño de futuros dispositivos intracelulares para el análisis de parámetros en célula única in situ

    Dispositivo intracelular para el estudio de parámetros intracelulares en células, órganos y tejidos

    Get PDF
    Dispositivo intracelular para el estudio de parámetros intracelulares en células, órganos y tejidos. Esta invención se refiere al diseño y fabricación de un micronano dispositivo sensor de reducido tamaño (en el rango del micrómetro, 10-6 metros al nanómetro, 10-9 metros), el cual es introducible mediante procedimiento conocido, en células aisladas o en tejidos vivos para permitir el estudio y actuación externa en los procesos biológicos, bioquímicos y biofísicos que tienen lugar en su interior. La utilización de esta nueva técnica no implica de antemano y sin otra alternativa, la destrucción, o, cuanto menos, la alteración de la célula. Las técnicas de fabricación empleadas se han tomado de la microelectrónica actual.Consejo Superior de Investigaciones Científicas (España), Universidad Autònoma de BarcelonaB1 Patente con informe sobre el estado de la ténic
    corecore