99 research outputs found

    How genomics reclassifies diseases : the case of Alport syndrome

    Get PDF
    Altres ajuts: The author's research is funded by the Instituto de Salud Carlos III/Fondo Europeo de Desarrollo Regional (FEDER) funds, RETIC REDINREN RD16/0009 FIS FEDER FUNDS.In this issue, Matthews et al. provide a comprehensive review of published cohorts with heterozygous pathogenic variants in COL4A3 or COL4A4, documenting the wide spectrum of the disease. Due to the extreme phenotypes that patients with heterozygous pathogenic variants in COL4A3 or COL4A4 may show, the disease has been referred to in a variety of ways, including 'autosomal dominant Alport syndrome', 'thin basement membrane disease', 'thin basement membrane nephropathy', 'familial benign hematuria' and 'carriers of autosomal dominant Alport syndrome'. This confusion over terminology has prevented nephrologists from being sufficiently aware of the relevance of the entity. Nowadays, however, next-generation sequencing facilitates the diagnosis and it is becoming a relatively frequent finding in haematuric-proteinuric nephropathies of unknown origin, even in non-familial cases. There is a need to raise awareness among nephrologists about the disease in order to improve diagnosis and provide better management for these patients

    Genetic kidney diseases as an underrecognized cause of chronic kidney disease : the key role of international registry reports

    Get PDF
    Inherited kidney diseases (IKDs) are among the leading causes of early-onset chronic kidney disease (CKD) and are responsible for at least 10-15% of cases of kidney replacement therapy (KRT) in adults. Paediatric nephrologists are very aware of the high prevalence of IKDs among their patients, but this is not the case for adult nephrologists. Recent publications have demonstrated that monogenic diseases account for a significant percentage of adult cases of CKD. A substantial number of these patients have received a non-specific/incorrect diagnosis or a diagnosis of CKD of unknown aetiology, which precludes correct treatment, follow-up and genetic counselling. There are a number of reasons why genetic kidney diseases are difficult to diagnose in adulthood: (i) adult nephrologists, in general, are not knowledgeable about IKDs; (ii) existence of atypical phenotypes; (iii) genetic testing is not universally available; (iv) family history is not always available or may be negative; (v) lack of knowledge of various genotype-phenotype relationships and (vi) conflicting interpretation of the pathogenicity of many sequence variants. Registries can contribute to visualize the burden of IKDs by regularly grouping all IKDs in their annual reports, as is done for glomerulonephritis or interstitial diseases, rather than reporting only cystic disease and hiding other IKDs under labels such as 'miscellaneous' or 'other'. Any effort to reduce the percentage of patients needing KRT with a diagnosis of 'nephropathy of unknown etiology' or an unspecific/incorrect diagnosis should be encouraged as a step towards precision nephrology. Genetic testing may be of value in this context but should not be used indiscriminately, but rather on the basis of a deep knowledge of IKDs

    Rare diseases, rare presentations : recognizing atypical inherited kidney disease phenotypes in the age of genomics

    Get PDF
    Altres ajuts: Fundación Renal Íñigo Álvarez de Toledo (FRIAT)A significant percentage of adults (10%) and children (20%) on renal replacement therapy have an inherited kidney disease (IKD). The new genomic era, ushered in by the next generation sequencing techniques, has contributed to the identification of new genes and facilitated the genetic diagnosis of the highly heterogeneous IKDs. Consequently, it has also allowed the reclassification of diseases and has broadened the phenotypic spectrum of many classical IKDs. Various genetic, epigenetic and environmental factors may explain 'atypical' phenotypes. In this article, we examine different mechanisms that may contribute to phenotypic variability and also provide case examples that illustrate them. The aim of the article is to raise awareness, among nephrologists and geneticists, of rare presentations that IKDs may show, to facilitate diagnosis

    Renal replacement therapy in ADPKD patients : a 25-year survey based on the Catalan registry

    Get PDF
    Background: Some 7-10% of patients on replacement renal therapy (RRT) are receiving it because of autosomal dominant polycystic kidney disease (ADPKD). The age at initiation of RRT is expected to increase over time. Methods: Clinical data of 1,586 patients (7.9%) with ADPKD and 18,447 (92.1%) patients with other nephropathies were analysed from 1984 through 2009 (1984-1991, 1992-1999 and 2000-2009). Results: The age at initiation of RRT remained stable over the three periods in the ADPKD group (56.7 ± 10.9 (mean ± SD) vs 57.5 ± 12.1 vs 57.8 ± 13.3 years), whereas it increased significantly in the non-ADPKD group (from 54.8 ± 16.8 to 63.9 ± 16.3 years, p < 0.001). The ratio of males to females was higher for non-ADPKD than for ADPKD patients (1.6-1.8 vs 1.1-1.2). The prevalence of diabetes was significantly lower in the ADPKD group (6.76% vs 11.89%, p < 0.001), as were most of the co-morbidities studied, with the exception of hypertension. The survival rate of the ADPKD patients on RRT was higher than that of the non-ADPKD patients (p < 0.001). Conclusions: Over time neither changes in age nor alterations in male to female ratio have occurred among ADPKD patients who have started RRT, probably because of the impact of unmodifiable genetic factors in the absence of a specific treatment

    Novel homozygous OSGEP gene pathogenic variants in two unrelated patients with Galloway-Mowat syndrome : case report and review of the literature

    Get PDF
    Galloway-Mowat syndrome (GAMOS) is a rare autosomal recessive disorder characterized by early-onset nephrotic syndrome and microcephaly with brain anomalies. WDR73 pathogenic variants were described as the first genetic cause of GAMOS and, very recently, four novel causative genes, OSGEP, LAGE3, TP53RK, and TPRKB, have been identified. We present the clinical and genetic characteristics of two unrelated infants with clinical suspicion of GAMOS who were born from consanguineous parents. Both patients showed a similar clinical presentation, with early-onset nephrotic syndrome, microcephaly, brain atrophy, developmental delay, axial hypotonia, and early fatality. We identified two novel likely disease-causing variants in the OSGEP gene. These two cases, in conjunction with the findings of a literature review, indicate that OSGEP pathogenic variants are associated with an earlier onset of nephrotic syndrome and shorter life expectancy than WDR73 pathogenic variants. Our findings expand the spectrum of pathogenic variants in the OSGEP gene and, taken in conjunction with the results of the literature review, suggest that the OSGEP gene should be considered the main known monogenic cause of GAMOS. Early genetic diagnosis of GAMOS is of paramount importance for genetic counseling and family planning

    Comparative analysis of tools to predict rapid progression in autosomal dominant polycystic kidney disease

    Get PDF
    Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease and shows a wide phenotype. Only patients with rapid progression (RP) are included in clinical trials or are approved to receive disease-modifying drugs. This study aims at comparing different available predictive tools in ADPKD with the Mayo classification (MC) identification of rapid progressors based on high total kidney volume (TKV) according to age. Methods: A total of 164 ADPKD patients were recruited retrospectively from a single centre. The performance of diverse tools to identify RP defined as being in MC categories 1C-1E was assessed. Results: A total of 118 patients were MC 1C-1E. The algorithm developed by the European Renal Association-European Dialysis and Transplant Association Working Group on Inherited Kidney Disorders/European Renal Best Practice had a low sensitivity in identifying MC 1C-1E. The sensitivity and specificity of TKV to predict RP depend on the cut-off used. A kidney length of >16.5 cm before age 45 years has high specificity but low sensitivity. Assessing the MC by ultrasonography had high levels of agreement with magnetic resonance imaging (MRI) data, especially for 1A, 1D and 1E. The estimated glomerular filtration rate (eGFR) decline was very sensitive but had low specificity. In contrast, the Predicting Renal Outcome in Polycystic Kidney Disease (PROPKD) score was very specific but had poor sensitivity. Having hypertension before 35 years of age is a good clinical predictor of MC 1C-1E. Family history can be of help in suggesting RP, but by itself it lacks sufficient sensitivity and specificity. Conclusions: The MC by ultrasonography could be an option in hospitals with limited access to MRI as it performs well generally, and especially at the extremes of the MC, i.e. classes 1A, 1D and 1E. The eGFR decline is sensitive but not very specific when compared with the MC, whereas the PROPKD score is very specific but has low sensitivity. Integrating the different tools currently available to determine RP should facilitate the identification of rapid progressors among patients with ADPKD

    The Benefits of Early versus Late Therapeutic Intervention in Fabry Disease

    Get PDF
    Fabry disease (FD) is an X-linked lysosomal storage disorder caused by pathogenic variants of the GLA gene. Heterozygous female patients may show much more variability in clinical manifestations, ranging from asymptomatic to full-blown disease. Because of this heterogeneous clinical picture in women, the diagnosis of FD has typically been delayed for more than a decade, and the optimal time to initiate treatment remains controversial. Case Presentation. Here, we present two unrelated female patients diagnosed with FD harbouring the same pathogenic GLA variant. We discuss the implications of initiating specific therapy at different stages of the disease, with and without organ involvement (early versus late therapeutic intervention). These clinical cases suggest that initiating specific treatment at an earlier age in women with FD may prevent organ involvement and associated clinical events

    Digenic Alport Syndrome

    Get PDF
    Digenic Alport syndrome refers to the inheritance of pathogenic variants in COL4A5 plus COL4A3 or COL4A4 or in COL4A3 plus COL4A4. Where digenic Alport syndrome includes a pathogenic COL4A5 variant, the consequences depend on the sex of the affected individual, COL4A5 variant ?severity,? and the nature of the COL4A3 or COL4A4 change. A man with a pathogenic COL4A5 variant has all his collagen IV ?3?4?5-heterotrimers affected, and an additional COL4A3 or COL4A4 variant may not worsen disease. A woman with a pathogenic COL4A5 variant has on average 50% of her heterotrimers affected, which is increased to 75% with a further COL4A3 or COL4A4 variant and associated with a higher risk of proteinuria. In digenic Alport syndrome with pathogenic COL4A3 and COL4A4 variants, 75% of the heterotrimers are affected. The COL4A3 and COL4A4 genes occur head-to-head on chromosome 2, and inheritance is autosomal dominant when both variants affect the same chromosome (in cis) or recessive when they affect different chromosomes (in trans). This form of digenic disease results in increased proteinuria and a median age of kidney failure intermediate between autosomal dominant and autosomal recessive Alport syndrome. Previous guidelines have suggested that all pathogenic or likely pathogenic digenic variants should be identified and reported. Affected family members should be identified, treated, and discouraged from kidney donation. Inheritance within a family is easier to predict if the two variants are considered independently and if COL4A3 and COL4A4 variants are known to be inherited on the same or different chromosomes

    Insight into response to mTOR inhibition when PKD1 and TSC2 are mutated

    Get PDF
    Altres ajuts: Novartis PharmaceuticalMutations in TSC1 or TSC2 cause the tuberous sclerosis complex (TSC), while mutations in PKD1 or PKD2 cause autosomal dominant polycystic kidney disease (ADPKD). PKD1 lays immediately adjacent to TSC2 and deletions involving both genes, the PKD1/TSC2 contiguous gene syndrome (CGS), are characterized by severe ADPKD, plus TSC. mTOR inhibitors have proven effective in reducing angiomyolipoma (AML) in TSC and total kidney volume in ADPKD but without a positive effect on renal function. We describe a patient with independent truncating PKD1 and TSC2 mutations who has the expected phenotype for both diseases independently instead of the severe one described in PKD1/TSC2 -CGS. Treatment with mTOR inhibitors reduced the AML and kidney volume for 2 years but thereafter they resumed growth; no positive effect on renal function was seen throughout. This is the first case addressing the response to mTOR treatment when independent truncating mutations in PKD1 and TSC2 are present. This case reveals that although PKD1 and TSC2 are adjacent genes and there is likely cross-talk between the PKD1 and TSC2 signalling pathways regulating mTOR, having independent TSC2 and PKD1 mutations can give rise to a milder kidney phenotype than is typical in PKD1/TSC2 -CGS cases. A short-term beneficial effect of mTOR inhibition on AML and total kidney volume was not reflected in improved renal function

    Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis

    Get PDF
    Mutations in the NPHS1 gene cause congenital nephrotic syndrome of the Finnish type presenting before the first 3 months of life. Recently, NPHS1 mutations have also been identified in childhood-onset steroid-resistant nephrotic syndrome and milder courses of disease, but their role in adults with focal segmental glomerulosclerosis remains unknown. Here we developed an in silico scoring matrix to evaluate the pathogenicity of amino-acid substitutions using the biophysical and biochemical difference between wild-type and mutant amino acid, the evolutionary conservation of the amino-acid residue in orthologs, and defined domains, with the addition of contextual information. Mutation analysis was performed in 97 patients from 89 unrelated families, of which 52 presented with steroid-resistant nephrotic syndrome after 18 years of age. Compound heterozygous or homozygous NPHS1 mutations were identified in five familial and seven sporadic cases, including one patient 27 years old at onset of the disease. Substitutions were classified as ‘severe’ or ‘mild’ using this in silico approach. Our results suggest an earlier onset of the disease in patients with two ‘severe’ mutations compared to patients with at least one ‘mild’ mutation. The finding of mutations in a patient with adult-onset focal segmental glomerulosclerosis indicates that NPHS1 analysis could be considered in patients with later onset of the disease
    corecore