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Abstract

Background: Mutations in TSC1 or TSC2 cause the tuberous sclerosis complex (TSC), while mutations in PKD1 or
PKD2 cause autosomal dominant polycystic kidney disease (ADPKD). PKD1 lays immediately adjacent to TSC2 and
deletions involving both genes, the PKD1/TSC2 contiguous gene syndrome (CGS), are characterized by severe ADPKD,
plus TSC. mTOR inhibitors have proven effective in reducing angiomyolipoma (AML) in TSC and total kidney volume in
ADPKD but without a positive effect on renal function.

Methods and results: We describe a patient with independent truncating PKD1 and TSC2 mutations who has the
expected phenotype for both diseases independently instead of the severe one described in PKD1/TSC2-CGS.
Treatment with mTOR inhibitors reduced the AML and kidney volume for 2 years but thereafter they resumed
growth; no positive effect on renal function was seen throughout. This is the first case addressing the response
to mTOR treatment when independent truncating mutations in PKD1 and TSC2 are present.

Conclusions: This case reveals that although PKD1 and TSC2 are adjacent genes and there is likely cross-talk between
the PKD1 and TSC2 signalling pathways regulating mTOR, having independent TSC2 and PKD1 mutations can give rise
to a milder kidney phenotype than is typical in PKD1/TSC2-CGS cases. A short-term beneficial effect of mTOR inhibition
on AML and total kidney volume was not reflected in improved renal function.
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Background
Autosomal dominant polycystic kidney disease (ADPKD)
is the most common kidney disorder with a Mendelian in-
heritance pattern, and a prevalence ranging from 1/400 to
1/1000 worldwide [1, 2]. It is responsible for 4–10 % of
end-stage renal disease (ESRD) in Western countries [3, 4].
ADPKD shows both locus and allelic heterogeneity. Two
causative genes—PKD1, and PKD2 have been identified
[5, 6]. The TSC2 and PKD1 genes are overlapped at
their 3′ UTR ends by 3 bp. The TSC2 gene encodes
tuberin and together with TSC1, encoding for hamartin,
causes the tuberous sclerosis complex (TSC). TSC is an
autosomal dominant disorder, with high penetrance
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and a birth incidence of 1 in 6000–11,000 [7]. Clinically, it
manifests with skin lesions, renal, neurological, pulmonary
and cardiac symptoms. For the adequate diagnosis the
established diagnostic criteria by Northrup et al. should be
followed [8]. The clinical presentation of TSC ranges from
a few features of the disease to severe neurological in-
volvement [9].
Analysis of TSC2 patients with severe renal cystic disease

showed they can have deletions also disrupting PKD1; a
contiguous gene syndrome (CGS). Brook-Carter et al. iden-
tified 6 TSC2 children with very severe polycystic disease
showing deletions that involved both genes [10].
These children, as well as others reported in the litera-

ture, present with enlarged polycystic kidneys recognizable
in utero, at birth or shortly thereafter [10–12]. Their kid-
neys are filled by a multitude of variably sized cysts,
closely resembling those seen in advanced stages of
ADPKD and they usually enter ESRD in the second or
third decade of life. Other typical lesions of TSC, such as
angiomyolipomas (AMLs), ungual fibromas, and well-
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established facial angiofibromas, only appear later in life
[11–17]. No description of patients having both diseases
caused by two independent mutations in the PKD1 and
the TSC2 genes have been reported to date.
Tuberin and hamartin form a complex that regulates

signaling through the mammalian target of rapamycin
(Rheb/mTOR/p70S6K) pathway, which controls processes
such as cell growth, cell cycle progression and apoptosis.
Mutations to TSC1 or TSC2 permit aberrant upregulation
of mTOR signaling causing increased protein synthesis
and cell growth [18]. Also, polycystin 1 (PC1), the PKD1
protein product, interacts and protects tuberin S939 from
AKT phosphorylation and helps to retain tuberin in the
membrane to suppress mTOR activity [19–21].
Inhibition of mTOR has been proposed as therapeutic

approach for both TSC and ADPKD. To date, the results
are promising for TSC but are not encouraging for
ADPKD [22–28].
We report here a patient with TSC and ADPKD due

to independent mutations in both TSC2 and PKD1 who
was treated with mTOR inhibitors showing a good re-
sponse based on AML and cystic burden decrease but
without preservation of renal function. The cross talk
between tuberin, hamartin, the polycystins and mTOR
are discussed to explain the phenotype of the patient
and his response to mTOR inhibition.
Methods
A 26-year-old man first presented to our renal unit at
11 years of age following detection of cystic kidneys.
His father, paternal aunt, paternal grandmother and sis-

ter have ADPKD (Fig. 1). The age at onset of ESRD was
68 for the grandmother, 44 for the father and 48 for the
aunt. The patient’s sister has normal renal function, hyper-
tension and enlarged kidneys (kidney length 17.5 cm) at
the age of 30. There is no family history of TSC.
The patient was diagnosed with TSC at 3 months due

to hypomelanic macules and a seizure. An echocardio-
gram revealed a cardiac rhabdomyoma, which was re-
moved at 6 months. A brain MRI showed numerous
subependymal nodules and periventricular calcifica-
tions. A retinal astrocytoma was also detected in the left
eye and abnormal retinal vessels in the right one. Facial
angiofibroma developed in early childhood. Development
progressed normally with no further seizures or mental re-
tardation. A kidneys ultrasound scan performed at 3 years
demonstrated multiple small cysts throughout the renal
parenchyma. Serial yearly ultrasound scans showed an
AML of 3 cm of diameter in the left kidney at the age of
14. Cyst size and number increased along with the AML,
which was 6 cm with a kidney length of 17 cm at 22 years.
Because of concerns about the increasing size of the
AML, local ethical approval was obtained and sirolimus
started at 22 years of age (mean dose: 3 mg/day, trough
levels 6.9 ± 3.8 ng/ml).
The patient and his family signed informed consents

allowing researchers to publish their data and imaging.
They also signed informed consent for the genetic
study. The study was approved by the IRB of Fundació
Puigvert.
Imaging
Abdominal imaging evaluations were performed by 1.5
Tesla magnetic resonance (Vantage Atlas, Toshiba Medical
Systems Corporation, Otawara-shi, Tochigi-ken, JAPAN)
with a body phased-array coil. All studies were performed
with the patient in supine position. Coronal, sagittal and
axial scans were acquired with T1-weighted fast spoiled
gradient echo and T2-weighted fast spin echo protocols
with and without fat suppression.
Abdominal studies were analyzed by two independent

radiologists with more than 10 years of experience inter-
preting abdominal imaging studies. Before the start of
the evaluation, the radiologists showed an intra and
inter-observer variability of less than 5 % in focal renal
mass measurement.
The volumes of individual kidneys were measured in

T1-weighted images with use of the stereologic method
[25, 29, 30]. Tumour volume was estimated using a stan-
dardised validated software program (Vitrea, Vital Imaging
version 4.1.14.0).
Genetic studies
Haplotype analysis was performed using microsatellite
markers within and closely flanking PKD1/TSC2 and
PKD2. The markers used were: HBAP1, D16S3024,
D16S3395, KG8, AC2.5, CW2, D16S3070 for PKD1/TSC2
and D4S1534, D4S2462, D4S2929, D4S2460, D4S423 for
PKD2. The analyses of these markers were performed by
PCR amplification using fluorescent primers and resolved
on the ABI 3130-Avant Genetic Analyzer.
Mutation screening of PKD1 and TSC2 genes were

performed by direct Sanger sequencing. The duplicated
region of PKD1 was amplified as five PKD1-specific
fragments by long-range polymerase chain reaction
(LR-PCR) followed by nested PCRs [31] combined with
Sanger sequencing of all 46 PKD1 exons. For TSC2, the
42 exons were amplified and sequenced with primers
designed using genomic sequence information (GenBank
accession number: NG_005895.1) and the Primer 3
(v. 0.4.0) program [32]. To screen for PKD1/PKD2 de-
letion/duplication Salsa MLPA kit P351-B1/P352-B1
(MRC-Holland, Amsterdam, Netherlands) was used,
which also includes probes for exons 35, 37 and 41 of
the TSC2 gene.
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Fig. 1 (See legend on next page.)
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Fig. 1 Panel a Pedigree of the family showing the segregation analysis of haplotypes as well as PKD1 and TSC2 mutations. The arrow points the
proband reported in this case Panel b MLPA for PKD1 gene and the 3′ end of TSC2 gene, each bar represents the normalized peak height for the
probe indicated on the x axis. The heavy black lines represent the deletion of the PKD1 exons 1–10 in heterozygosis. Panel c AML volume
evolution: 1A and 1B baseline; 2A and 2B at the end of 3 years treatment with mTOR inhibitors; 3A and 3B one year later (without treatment).
The AML decreased in size after 3 years on treatment and slightly increased in size one year after treatment withdrawal. Panel d Right (top row)
and left kidney (bottom row): initial MR (1R and 1L), after 3 years on treatment with mTOR inhibitors (2R and 2L) and 1 year later (without
treatment) (3R and 3L)
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Results
Six months after commencing treatment, there was a
reduction in the volume of the AMLs and renal volume
on MRI scan, which continued decreasing for 18 more
months, although increased during the third year (Table 1)
(Fig. 1c). The number of facial angiofibromas remained
unchanged, but the lesions were smaller, paler and less
rough. At that time, the negative results of two large trials
using mTOR inhibitors in ADPKD were released, which
together with the evidence of regrowth under treatment,
prompted us to discontinue the mTOR inhibition.
One year after discontinuation, the AML had further

increased along with the renal volume, and the GFR de-
creased (Table 1). The only side effect of the drug was
an increase of the protein to creatinine ratio during
treatment which decreased after cessation (Table 1). Al-
though normal blood pressure was recorded while on
treatment, when it stopped a slight but abnormal in-
crease in diastolic BP was detected and treatment with
ACEI was started achieving a good control of BP.
Initially linkage analysis showed that the ADPKD family

was linked to the PKD1 gene (Fig. 1). Also, heterozygosity
of the KG8 microsatellite marker (located in the 3′ region
of PKD1) ruled out a contiguous gene syndrome. Subse-
quently, sequencing and MLPA analysis of the PKD1 and
TSC2 genes, disclosed a deletion of PKD1 (exons 1–10,
Fig. 1b): c.1-?_2097 + ?del, (p.Met1fs) (definitely patho-
genic mutation), and a TSC2 nonsense mutation: TSC2
c.2251C > T (p.Arg751*) (definitely pathogenic mutation).
The PKD1 mutation was present in all affected members
of the family while the TSC2 mutation was absent in all
but the proband.

Discussion
A single individual carrying mutations in two different
genes causing two different diseases, and therefore suf-
fering both entities, is not frequent but depends on the
prevalence of each disease. Taking into account that the
prevalences of ADPKD and TSC are around one in 800
and one in 8.000, respectively, the probability for the
simultaneous occurrence of these two diseases is ap-
proximately one in 6.400.000 births. Due to difficulty of
genetic testing to demonstrate the coexistence of muta-
tions in the two genes, probably this unusual population
has been under represented in the literature.
Most patients with TSC and severe cystic disease have
a CGS with a deletion involving the coding regions of
both the TSC2 and the PKD1 genes (PKD1/TSC2-CGS)
[10, 14, 33, 34]. They consist of ~3 % of TSC patients
overall [9]. The prevalence of kidney cysts in TSC alone
is between 30 and 50 %, more frequent in TSC2 than
TSC1 [9, 26, 35], especially when the TSC2 gene har-
bours a nonsense or frameshift mutation [36]. But these
non-CGS TSC patients generally have just a few small
cysts of little clinical relevance [17, 37] and, do not
present renal failure [37]. However, children with PKD1/
TSC2-CGS usually enter ESRD in the second or third
decade of life [10, 17]. Nevertheless, some PKD1/TSC2-
CGS patients have milder renal disease [13, 38] with mo-
saicism being the main reason which is rather common
in these cases but not supported by the blood derived
DNA studies here [12, 17, 37].
A case with separate TSC1 and PKD2 mutations had a

very modest cystic phenotype, probably due to the rela-
tively mild disease in PKD2 compared to PKD1 and be-
cause TSC1 mutations are rarely associated with renal
cysts [39].
The case we present here has a de novo nonsense mu-

tation in the TSC2 gene and a germ line deletion of the
first 10 exons of the PKD1 gene. The TSC2 mutation ap-
peared spontaneously in this patient and does not show
mosaicism in blood but we cannot rule out mosaicism at
the organ level, particularly in the kidney. ADPKD in
this family is quite severe but what is most surprising is
the apparent limited impact of an additional TSC2 muta-
tion in the proband. He will probably enter ESRD sooner
than his relatives but not by many years. In fact, his kid-
ney size does not differ significantly from his sister. If
the CGS phenotype were just due to an additive effect of
disrupting both genes, one would expect the same effect
of a truncating mutation in both genes than a deletion
involving both of them. However, as some cases of late
onset of ESRD have been described in PKD1/TSC2-CGS
the real explanation for a milder phenotype remains elu-
sive [5, 13, 38]. Given that the primary transcripts from
these genes slightly overlap at the 3′ region, regulation
due to antisense noncoding (nc)RNAs or miRNA bind-
ing could be unusually altered. One limitation of the
present case is the impossibility to know whether the
mutations are in cis or in trans due to the fact that the



Table 1 Progression of kidney and angiomyolipoma volume along time. Laboratory test while on and off mTOR inhibitor treatment

Shaded columns represent the period in which the patient received mTOR inhibitors
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TSC2 mutation is de novo. If the TSC2 mutation is in
cis position with the PKD1 deletion, the proband is ex-
pected to have similar disease presentation as patients
with TSC2/PKD1 CGS. However, if the two mutations
are in trans, the second hit, likely by loss of heterozygos-
ity, can only lead to loss of both TSC2 and PKD1 func-
tion on one chromosome while leaving one normal copy
of both. Under this scenario, the proband will maintain
normal function of one of the two genes with a milder
phenotype than expected for TSC2/PKD1 CGS. However,
as stated by Brook Carter et al., the phenotypes associated
with independent deletion of each of the contiguous genes
are different and the contiguous syndromes represent an
accumulation of these phenotypes [10].
Tuberin, hamartin and PC1 are located at the basal
body or primary cilia and have been proposed to form a
complex which inhibits mTOR [20]. Alternatively, the
CGS phenotype may be due to disruption of two inde-
pendent cystogenic mechanisms, PC1 involving cilia and
tuberin through proliferation. Hartman found that Rapa-
mycin enhanced cilia formation in TSC1 and TSC2 null
cells and concluded that the efficacy of mTOR inhibitors
on renal cystic disease in patients carrying a TSC muta-
tion or PKD1/TSC2-CGS may differ from its efficacy in
ADPKD [40]. The fact that some cysts in ADPKD tissue
and Pkd1 mutant kidneys do not appear to upregulate
mTORC1 and the small number of cysts in patients with
TSC calls into question the essential role of the mTOR
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cascade in cyst formation [41]. Trials have demonstrated
efficacy of mTOR inhibitors in TSC with clear reduction
in the volume of AML [23–26]. However, mTOR inhibi-
tor studies in ADPKD patients have not been successful
[27, 28]. In AML, reduction of volume and probably vas-
cularisation is an excellent end point, but for ADPKD a
positive impact on renal function as well as a reduction
in kidney volume is ideally required. This is the first de-
scribed case treated with mTOR inhibitors having TSC
and ADPKD and showed that mTOR inhibition reduced
AML volume and cystic volume during the first 2 years,
but renal function still declined. Interestingly, both AML
and renal volume increased during the third year even
while on the treatment with adequate Rapamycin plasma
levels, which may be due to an adaptive escape mechan-
ism from mTOR inhibition, although this is an uncom-
mon event in non-cancer cells. This patient experienced
an increase in the protein/creatinine ratio which may be
explained by the effect of mTOR inhibition. The exact
mechanism by which mTOR inhibitors affect glomerular
permeability is not known. Many mechanisms have been
propose such as, decreased VEGF synthesis and expres-
sion, dose-related alteration of podocyte slit diaphragm-
associated protein structure and activation of the innate
immune system, resulting in an increased number of
glomerular macrophages [42–47].
Longer term trials in PKD1/TSC2-CGS patients would

be interesting in light of our results and also it would be
interesting to test the levels of mTOR activation in the
peripheral blood of classical CGS patients and of this
specific case.

Conclusions
Although PKD1 and TSC2 are adjacent genes and
tuberin-hamartin and PC1 may cross-talk and regulate
mTOR inhibition, having independent mutations in
TSC2 and PKD1 does not necessarily give rise to the
typically severe PKD1/TSC2-CGS phenotype. However
this is a unique case and the mild disease presentation
needs further verification when additional cases become
available.
mTOR inhibitors are efficient in reducing AML and

ADPKD kidney volume, but do not have a positive im-
pact on renal function.
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