12 research outputs found

    New imaging signatures of cardiac alterations in ischaemic heart disease and cerebrovascular disease using CMR radiomics

    Get PDF
    Background: Ischaemic heart disease (IHD) and cerebrovascular disease are two closely inter-related clinical entities. Cardiovascular magnetic resonance (CMR) radiomics may capture subtle cardiac changes associated with these two diseases providing new insights into the brain-heart interactions.Objective: To define the CMR radiomics signatures for IHD and cerebrovascular disease and study their incremental value for disease discrimination over conventional CMR indices.Methods: We analysed CMR images of UK Biobank's subjects with pre-existing IHD, ischaemic cerebrovascular disease, myocardial infarction (MI), and ischaemic stroke (IS) (n = 779, 267, 525, and 107, respectively). Each disease group was compared with an equal number of healthy controls. We extracted 446 shape, first-order, and texture radiomics features from three regions of interest (right ventricle, left ventricle, and left ventricular myocardium) in end-diastole and end-systole defined from segmentation of short-axis cine images. Systematic feature selection combined with machine learning (ML) algorithms (support vector machine and random forest) and 10-fold cross-validation tests were used to build the radiomics signature for each condition. We compared the discriminatory power achieved by the radiomics signature with conventional indices for each disease group, using the area under the curve (AUC), receiver operating characteristic (ROC) analysis, and paired t-test for statistical significance. A third model combining both radiomics and conventional indices was also evaluated.Results: In all the study groups, radiomics signatures provided a significantly better disease discrimination than conventional indices, as suggested by AUC (IHD:0.82 vs. 0.75; cerebrovascular disease: 0.79 vs. 0.77; MI: 0.87 vs. 0.79, and IS: 0.81 vs. 0.72). Similar results were observed with the combined models. In IHD and MI, LV shape radiomics were dominant. However, in IS and cerebrovascular disease, the combination of shape and intensity-based features improved the disease discrimination. A notable overlap of the radiomics signatures of IHD and cerebrovascular disease was also found.Conclusions: This study demonstrates the potential value of CMR radiomics over conventional indices in detecting subtle cardiac changes associated with chronic ischaemic processes involving the brain and heart, even in the presence of more heterogeneous clinical pictures. Radiomics analysis might also improve our understanding of the complex mechanisms behind the brain-heart interactions during ischaemia

    A Systematic Quality Scoring Analysis to Assess Automated Cardiovascular Magnetic Resonance Segmentation Algorithms

    Get PDF
    BACKGROUND: The quantitative measures used to assess the performance of automated methods often do not reflect the clinical acceptability of contouring. A quality-based assessment of automated cardiac magnetic resonance (CMR) segmentation more relevant to clinical practice is therefore needed. OBJECTIVE: We propose a new method for assessing the quality of machine learning (ML) outputs. We evaluate the clinical utility of the proposed method as it is employed to systematically analyse the quality of an automated contouring algorithm. METHODS: A dataset of short-axis (SAX) cine CMR images from a clinically heterogeneous population (n = 217) were manually contoured by a team of experienced investigators. On the same images we derived automated contours using a ML algorithm. A contour quality scoring application randomly presented manual and automated contours to four blinded clinicians, who were asked to assign a quality score from a predefined rubric. Firstly, we analyzed the distribution of quality scores between the two contouring methods across all clinicians. Secondly, we analyzed the interobserver reliability between the raters. Finally, we examined whether there was a variation in scores based on the type of contour, SAX slice level, and underlying disease. RESULTS: The overall distribution of scores between the two methods was significantly different, with automated contours scoring better than the manual (OR (95% CI) = 1.17 (1.07–1.28), p = 0.001; n = 9401). There was substantial scoring agreement between raters for each contouring method independently, albeit it was significantly better for automated segmentation (automated: AC2 = 0.940, 95% CI, 0.937–0.943 vs manual: AC2 = 0.934, 95% CI, 0.931–0.937; p = 0.006). Next, the analysis of quality scores based on different factors was performed. Our approach helped identify trends patterns of lower segmentation quality as observed for left ventricle epicardial and basal contours with both methods. Similarly, significant differences in quality between the two methods were also found in dilated cardiomyopathy and hypertension. CONCLUSIONS: Our results confirm the ability of our systematic scoring analysis to determine the clinical acceptability of automated contours. This approach focused on the contours' clinical utility could ultimately improve clinicians' confidence in artificial intelligence and its acceptability in the clinical workflo

    A Framework for Mining and Querying Summarized XML Data through Tree-Based Association Rules

    No full text
    In this work we describe the TreeRuler tool, which makes it possible for inexperienced users to access huge XML (or relational) datasets. TreeRuler encompasses two main features: (1) it mines all the frequent association rules from input documents without any a-priori specification of the desired results, and (2) it provides quick, summarized, thus often approximate answers to user’s queries, by using the previously mined knowledge. TreeRuler has been developed in the scenario of the Odyssey EU project dealing with information about crimes, both for the relational and XML data model. In this chapter we mainly focus on the objectives, strategies, and difficulties encountered in the XML context

    A Pilot Study on Electrical Impedance Tomography During CPAP Trial in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia: The Bright Side of Non-invasive Ventilation

    Get PDF
    Background: Different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia phenotypes were described that match with different lung compliance and level of oxygenation, thus requiring a personalized ventilator setting. The burden of so many patients and the lack of intensive care unit (ICU) beds often force physicians to choose non-invasive ventilation (NIV) as the first approach, even if no consent has still been reached to discriminate whether it is safer to choose straightforward intubation, paralysis, and protective ventilation. Under such conditions, electrical impedance tomography (EIT), a non-invasive bedside tool to monitor lung ventilation and perfusion defects, could be useful to assess the response of patients to NIV and choose rapidly the right ventilatory strategy. Objective: The rationale behind this study is that derecruitment is a more efficient measure of positive end expiratory pressure (PEEP)-dependency of patients than recruitment. We hypothesized that patients who derecruit significantly when PEEP is reduced are the ones that do not need early intubation while small end-expiratory lung volume (ΔEELV) variations after a single step of PEEP de-escalation could be predictive of NIV failure. Materials and Methods: Consecutive patients admitted to ICU with confirmed SARS-CoV-2 pneumonia ventilated in NIV were enrolled. Exclusion criteria were former intubation or NIV lasting > 72 h. A trial of continuos positive airway pressure (CPAP) 12 was applied in every patient for at least 15 min, followed by the second period of CPAP 6, either in the supine or prone position. Besides standard monitoring, ventilation of patients was assessed by EIT, and end-expiratory lung impedance (ΔEELI) (%) was calculated as the difference in EELI between CPAP12 and CPAP6. Tidal volume (Vt), Ve, respiratory rate (RR), and FiO2 were recorded, and ABGs were measured. Data were analyzed offline using the dedicated software. The decision to intubate or continue NIV was in charge of treating physicians, independently from study results. Outcomes of patients in terms of intubation rate and ICU mortality were recorded. Results: We enrolled 10 male patients, with a mean age of 67 years. Six patients (60%) were successfully treated by NIV until ICU discharge (Group S), and four patients failed NIV and were intubated and switched to MV (Group F). All these patients died in ICU. During the supine CPAP decremental trial, all patients experienced an increase in RR and Ve. ΔEELI was < 40% in Group F and > 50% in Group S. In the prone trial, ΔEELI was > 50% in all patients, while RR decreased in Group S and remained unchanged in Group F. Conclusion: ΔEELI < 40% after a single PEEP de-escalation step in supine position seems to be a good predictor of poor recruitment and CPAP failure

    A Review of Evaluation Approaches for Explainable AI With Applications in Cardiology

    No full text
    Explainable artificial intelligence (XAI) elucidates the decision-making process of complex AI models and is important in building trust in model predictions. XAI explanations themselves require evaluation as to accuracy and reasonableness and in the context of use of the underlying AI model. This review details the evaluation of XAI in cardiac AI applications and has found that, of the studies examined, 37% evaluated XAI quality using literature results, 11% used clinicians as domain-experts, 11% used proxies or statistical analysis, with the remaining 43% not assessing the XAI used at all. We aim to inspire additional studies within healthcare, urging researchers not only to apply XAI methods but to systematically assess the resulting explanations, as a step towards developing trustworthy and safe models.</p

    ISCHEMIC HEART DISEASE AND VASCULAR RISK FACTORS ARE ASSOCIATED WITH ACCELERATED BRAIN AGING

    No full text
    Ischemic heart disease (IHD) has been linked with poor brain outcomes. Brain age estimated from structural brain features and its deviation from actual age (brain-age delta in years, positive for accelerated brain aging) can express individual brain health in neurologically intact adults. Prevalent IHD is associated with accelerated brain aging and increased risk of dementia, that is not fully explained by microvascular injury. Besides shared vascular risk factors, additional disease-related mechanisms might contribute to abnormal aging. Brain-age delta may serve as an effective communication tool to illustrate the impact of modifiable risk factors and disease supporting preventative strategies

    Ischemic heart disease and vascular risk factors are associated with accelerated brain aging

    No full text
    Ischemic heart disease (IHD) has been linked with poor brain outcomes. Brain age estimated from structural brain features and its deviation from actual age (brain-age delta in years, positive for accelerated brain aging) can express individual brain health in neurologically intact adults. Prevalent IHD is associated with accelerated brain aging and increased risk of dementia, that is not fully explained by microvascular injury. Besides shared vascular risk factors, additional disease-related mechanisms might contribute to abnormal aging. Brain-age delta may serve as an effective communication tool to illustrate the impact of modifiable risk factors and disease supporting preventative strategies

    Quantification of Epicardial Adipose Tissue Volume and Attenuation for Cardiac CT Scans Using Deep Learning in a Single Multi-Task Framework

    No full text
    Background: Recent studies have shown that epicardial adipose tissue (EAT) is an independent atrial fibrillation (AF) prognostic marker and has influence on the myocardial function. In computed tomography (CT), EAT volume (EATv) and density (EATd) are parameters that are often used to quantify EAT. While increased EATv has been found to correlate with the prevalence and the recurrence of AF after ablation therapy, higher EATd correlates with inflammation due to arrest of lipid maturation and with high risk of plaque presence and plaque progression. Automation of the quantification task diminishes the variability in readings introduced by different observers in manual quantification and results in high reproducibility of studies and less time-consuming analysis. Our objective is to develop a fully automated quantification of EATv and EATd using a deep learning (DL) framework. Methods: We proposed a framework that consists of image classification and segmentation DL models and performs the task of selecting images with EAT from all the CT images acquired for a patient, and the task of segmenting the EAT from the output images of the preceding task. EATv and EATd are estimated using the segmentation masks to define the region of interest. For our experiments, a 300-patient dataset was divided into two subsets, each consisting of 150 patients: Dataset 1 (41,979 CT slices) for training the DL models, and Dataset 2 (36,428 CT slices) for evaluating the quantification of EATv and EATd. Results: The classification model achieved accuracies of 98% for precision, recall and F1 scores, and the segmentation model achieved accuracies in terms of mean (± std.) and median dice similarity coefficient scores of 0.844 (± 0.19) and 0.84, respectively. Using the evaluation set (Dataset 2), our approach resulted in a Pearson correlation coefficient of 0.971 (R2 = 0.943) between the label and predicted EATv, and the correlation coefficient of 0.972 (R2 = 0.945) between the label and predicted EATd. Conclusions: We proposed a framework that provides a fast and robust strategy for accurate EAT segmentation, and volume (EATv) and attenuation (EATd) quantification tasks. The framework will be useful to clinicians and other practitioners for carrying out reproducible EAT quantification at patient level or for large cohorts and high-throughput projects

    Quantification of Epicardial Adipose Tissue Volume and Attenuation for Cardiac CT Scans using Deep Learning in a Single Multi-task Framework

    No full text
    Background: Recent studies have shown that epicardial adipose tissue (EAT) is an independent atrial fibrillation (AF) prognostic marker and has influence on the myocardial function. In computed tomography (CT), EAT volume (EATv) and density (EATd) are parameters that are often used to quantify EAT. While increased EATv has been found to correlate with the prevalence and the recurrence of AF after ablation therapy, higher EATd correlates with inflammation due to arrest of lipid maturation and with high risk of plaque presence and plaque progression. Automation of the quantification task diminishes the variability in readings introduced by different observers in manual quantification and results in high reproducibility of studies and less time-consuming analysis. Our objective is to develop a fully automated quantification of EATv and EATd using a deep learning (DL) framework. Methods: We proposed a framework that consists of image classification and segmentation DL models and performs the task of selecting images with EAT from all the CT images acquired for a patient, and the task of segmenting the EAT from the output images of the preceding task. EATv and EATd are estimated using the segmentation masks to define the region of interest. For our experiments, a 300-patient dataset was divided into two subsets, each consisting of 150 patients: Dataset 1 (41,979 CT slices) for training the DL models, and Dataset 2 (36,428 CT slices) for evaluating the quantification of EATv and EATd. Results: The classification model achieved accuracies of 98% for precision, recall and F1 scores, and the segmentation model achieved accuracies in terms of mean (± std.) and median dice similarity coefficient scores of 0.844 (± 0.19) and 0.84, respectively. Using the evaluation set (Dataset 2), our approach resulted in a Pearson correlation coefficient of 0.971 (R2 = 0.943) between the label and predicted EATv, and the correlation coefficient of 0.972 (R2 = 0.945) between the label and predicted EATd. Conclusions: We proposed a framework that provides a fast and robust strategy for accurate EAT segmentation, and volume (EATv) and attenuation (EATd) quantification tasks. The framework will be useful to clinicians and other practitioners for carrying out reproducible EAT quantification at patient level or for large cohorts and high-throughput projects

    Predicting post-contrast information from contrast agent free cardiac MRI using machine learning:Challenges and methods

    Get PDF
    OBJECTIVES: Currently, administering contrast agents is necessary for accurately visualizing and quantifying presence, location, and extent of myocardial infarction (MI) with cardiac magnetic resonance (CMR). In this study, our objective is to investigate and analyze pre- and post-contrast CMR images with the goal of predicting post-contrast information using pre-contrast information only. We propose methods and identify challenges. METHODS: The study population consists of 272 retrospectively selected CMR studies with diagnoses of MI (n = 108) and healthy controls (n = 164). We describe a pipeline for pre-processing this dataset for analysis. After data feature engineering, 722 cine short-axis (SAX) images and segmentation mask pairs were used for experimentation. This constitutes 506, 108, and 108 pairs for the training, validation, and testing sets, respectively. We use deep learning (DL) segmentation (UNet) and classification (ResNet50) models to discover the extent and location of the scar and classify between the ischemic cases and healthy cases (i.e., cases with no regional myocardial scar) from the pre-contrast cine SAX image frames, respectively. We then capture complex data patterns that represent subtle signal and functional changes in the cine SAX images due to MI using optical flow, rate of change of myocardial area, and radiomics data. We apply this dataset to explore two supervised learning methods, namely, the support vector machines (SVM) and the decision tree (DT) methods, to develop predictive models for classifying pre-contrast cine SAX images as being a case of MI or healthy. RESULTS: Overall, for the UNet segmentation model, the performance based on the mean Dice score for the test set (n = 108) is 0.75 (±0.20) for the endocardium, 0.51 (±0.21) for the epicardium and 0.20 (±0.17) for the scar. For the classification task, the accuracy, F1 and precision scores of 0.68, 0.69, and 0.64, respectively, were achieved with the SVM model, and of 0.62, 0.63, and 0.72, respectively, with the DT model. CONCLUSION: We have presented some promising approaches involving DL, SVM, and DT methods in an attempt to accurately predict contrast information from non-contrast images. While our initial results are modest for this challenging task, this area of research still poses several open problems
    corecore