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Background: Ischaemic heart disease (IHD) and cerebrovascular disease are two

closely inter-related clinical entities. Cardiovascular magnetic resonance (CMR) radiomics

may capture subtle cardiac changes associated with these two diseases providing new

insights into the brain-heart interactions.

Objective: To define the CMR radiomics signatures for IHD and cerebrovascular

disease and study their incremental value for disease discrimination over conventional

CMR indices.

Methods: We analysed CMR images of UK Biobank’s subjects with pre-existing IHD,

ischaemic cerebrovascular disease, myocardial infarction (MI), and ischaemic stroke (IS)

(n = 779, 267, 525, and 107, respectively). Each disease group was compared with

an equal number of healthy controls. We extracted 446 shape, first-order, and texture

radiomics features from three regions of interest (right ventricle, left ventricle, and left

ventricular myocardium) in end-diastole and end-systole defined from segmentation of

short-axis cine images. Systematic feature selection combined with machine learning

(ML) algorithms (support vector machine and random forest) and 10-fold cross-validation

tests were used to build the radiomics signature for each condition. We compared

the discriminatory power achieved by the radiomics signature with conventional indices

for each disease group, using the area under the curve (AUC), receiver operating

characteristic (ROC) analysis, and paired t-test for statistical significance. A third model

combining both radiomics and conventional indices was also evaluated.

Results: In all the study groups, radiomics signatures provided a significantly better

disease discrimination than conventional indices, as suggested by AUC (IHD:0.82 vs.

0.75; cerebrovascular disease: 0.79 vs. 0.77; MI: 0.87 vs. 0.79, and IS: 0.81 vs. 0.72).

Similar results were observed with the combined models. In IHD and MI, LV shape

radiomics were dominant. However, in IS and cerebrovascular disease, the combination

of shape and intensity-based features improved the disease discrimination. A notable

overlap of the radiomics signatures of IHD and cerebrovascular disease was also found.
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Conclusions: This study demonstrates the potential value of CMR radiomics

over conventional indices in detecting subtle cardiac changes associated with

chronic ischaemic processes involving the brain and heart, even in the presence

of more heterogeneous clinical pictures. Radiomics analysis might also improve

our understanding of the complex mechanisms behind the brain-heart interactions

during ischaemia.

Keywords: cardiovascular magnetic resonance, radiomics, ischaemic heart disease, myocardial infarction,

cerebrovascular disease, stroke, brain-heart axis

INTRODUCTION

Ischaemic heart disease (IHD) and ischaemic cerebrovascular
diseases are the leading causes of death and disability worldwide
(1). Although each entity has its own particularities, both
share common pathophysiological mechanisms mostly linked
to atherosclerosis and atherothrombosis. Patients with these
ischaemic conditions share similar clinical profiles, and their
co-existence is common (2).

Multiple interactions occur among these two disease entities,
which are not fully explained by shared vascular risk factors
(3, 4). Several mechanisms of brain-heart interaction have
been hypothesised, indicating complex bidirectional pathways
between the two diseases. In this scenario, cardiac diseases may
be the underlying cause of cerebrovascular events, while cerebral
ischaemia, in turn, may be associated with disturbances in heart
function (5).

Previous studies have focused on the possible brain areas
involved in the crosstalk between the two systems. They suggest
that cerebral ischaemia might trigger different pathways of
dysautonomia and increased inflammation, potentially resulting
in cardiac dysfunction (6–8). The main long-term cardiac
abnormalities described on conventional images include left
ventricle (LV) systolic and diastolic dysfunction, which can
both lead to cardiac remodelling (9, 10). However, whether
there are more subtle cardiac changes after ischaemic events
that might contribute to cardiac remodelling has not yet been
thoroughly investigated.

Cardiovascularmagnetic resonance (CMR) radiomics analysis
may provide new insights into the quantitative analysis of

Abbreviations: ACS, Acute coronary syndrome; AUC, Area under the ROC

curve; BSA, Body surface area; CMR, Cardiovascular magnetic resonance;

ED, End-diastole; ES, End-systole; FS, Feature selection; HCM, Hypertrophic

cardiomyopathy; HLA, Horizontal long-axis; IHD, Ischaemic heart disease; IS,

Ischaemic stroke; LAX, Long-axis; LGE, Late gadolinium enhancement; LV, Left

ventricle; LVEDV, Left ventricle end-diastolic volume; LVEF, Left ventricle ejection

fraction; LVESV, Left ventricle end-systolic volume; LVM, Left ventricle mass;

LVOT, Left ventricular outflow tract; LVSV, Left ventricle stroke volume; MI,

Myocardial infarction; ML, Machine learning; MRI, Magnetic resonance imaging;

MYO, Left ventricle myocardium; RF, Random forest; ROC, Receiver operating

characteristic; ROI, Region of interest; RV, Right ventricle; RVEDV, Right ventricle

end-diastolic volume; RVEF, Right ventricle ejection fraction; RVESV, Right

ventricle end-systolic volume; RVSV, Right ventricle stroke volume; SAX, Short-

axis; SI, signal intensity; SFS, Sequential feature selection; SVM, Support vector

machines; TIA, Transient ischamic attack; UKB, United Kingdom Biobank; VLA,

Vertical long-axis.

cardiac imaging by extracting a large number of computational
quantitative metrics, including shape and texture features,
which may capture a wide variety of phenotypic traits. Several
studies have already demonstrated their incremental role over
conventional imaging indices in identifying subtle cardiac
alterations due to specific clinical conditions (11).

Studying the morphological and myocardial tissue changes
associated with ischaemic heart and brain diseases using CMR
radiomics analysis may provide new insight into the relationship
between these two systems and their underlying mechanisms.
These additional imaging markers may also improve the early
diagnosis of ischaemic events and help clinicians identify those
most at risk who require more aggressive preventive strategies.

In this paper, we used CMR radiomics analysis to study
whether there were specific cardiac abnormalities in individuals
who had previous ischaemic cerebrovascular events and cardiac
events (IHD). We used machine learning (ML) methods to
identify the most defining radiomics features for each condition,
called “radiomics signature.” Finally, we studied whether the
radiomics-based models provided incremental information to
conventional approaches. To our knowledge, no previous
studies have used this approach to investigate the brain-heart
interactions after ischaemic processes on a large cohort of
participants as it is the United Kingdom Biobank (UKB).

METHODS

The UK Biobank Dataset
In this work we used clinical and imaging data from UKB, a
prospective cohort study which has been following the health
and well-being of half a million participants aged 40–69 years-
old recruited from across the UK between 2006 and 2010 (12).
Its goal is to improve the prevention, diagnosis, and treatment
of a wide range of severe and life-threatening illnesses. These
resources are made available to health researchers through an
application process. Information on participants’ health, lifestyle,
hearing and cognitive function, family history as well as physical
measurements, biological samples, and genome were collected
at recruitment (13). Some baseline measurements were updated
in subsequent visits. UKB is linked to a range of electronic
health records (cancer, death, hospital episodes, and general
practise) which provide information related to participants’
health outcomes. UKB also provides algorithmically defined
health outcomes, a classification of selected health-related events,
obtained through the algorithmic combinations of baseline
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information along with linked data from hospital admissions
and death registries. This classification allows for accurate
identification of diseases and their sub-sets. Since 2015, over
48,000 UKB participants (April 2021) underwent CMR. The
extensive amount of data available from each participant, make
UKB a good resource to address brain-heart interactions.

Defining the Study Populations
Among all the participants from UKB who completed the CMR
imaging protocol and passed the quality control check, we
identified subjects with a previous diagnosis of IHD and those
with cerebrovascular disease using a combination of selected
ICD-10 and ICD-9 codes for diagnosis. Participants who had
both conditions at the time of the CMR study were excluded
from the study. The full list of ICD codes for each study group
is provided in Supplementary Table 1.

We initially identified 1,516 subjects with IHD, including
angina, previous myocardial infarction (MI), or any
manifestation of IHD not resulting in MI.

The ischaemic cerebrovascular disease subset, instead,
included previous ischaemic stroke (IS) or transient ischaemic
attack (TIA), as both clinical manifestations have a significant
prognostic value (14, 15) (n= 267).

Participants with MI (n = 525) and IS (n = 107) only were
also considered separately as the subsets with evidence of cardiac
and cerebral organ damage, respectively. Definitions for MI were
consistent with those used by the UKB outcome adjudication
group (16). The identification of IS and TIA derived from the
ICD codes was in line with what suggested in a Systematic
Review from the UK Biobank Stroke Outcomes Group to identify
only the cases representative of the disease subtype studied with
adequate sensitivity and positive predictive value (17).

We chose as a comparator group the healthy Caucasian
“reference” cohort previously identified by Petersen et al. (18) to
establish the reference ranges for cardiac structure and function
in CMR (n = 779). We selected this cohort because it was well-
validated, and the rule-out criteria used to define the “healthy”
status were robust. Subjects were thus considered healthy if they
did not have any known cardiovascular diseases, traditional risk
factors, or other systemic conditions that could have impacted the
heart at the time of CMR study. The complete list of exclusion
criteria used to define the selected healthy cohort has been
described elsewhere (18).

Each disease group was then compared with an equal number
of randomly selected healthy controls to avoid class imbalance
problems, potentially affecting the ML models. Therefore,
this process produced four distinct control groups, each per
disease group.

Since there were fewer healthy participants than those with
IHD (n= 779 vs. 1,516, respectively), to obtain balanced groups,
we finally selected only 779 IHD subjects to match the numbers
of healthy comparators.

Therefore, at the end of the selection process, we had four
disease subsets each one to be compared with an equal number
of healthy controls: IHD (n= 779), cerebrovascular disease (n=

267), MI (n= 525), and IS (n= 107).

The overall participants’ selection process is shown
in Figure 1.

We thus conducted two experiments using different study
groups for the analysis.

In one experiment, we focused only on MI and IS subsets to
see whether ischaemia resulting in organ damage was associated
with cardiac changes detected on radiomics analysis.

In a second experiment, we analysed the radiomics features
of the IHD and cerebrovascular disease subsets. Our goal
was to verify whether it was possible to capture common
cardiac alterations associated with more clinically heterogeneous
ischaemic conditions.

CMR Imaging Protocol and Segmentation
The full CMR protocol in UKB has been described in details
elsewhere (19). In brief, the CMR images were acquired with
1.5 Tesla scanner (MAGNETOM Aera, Syngo Platform VD13A,
Siemens Healthcare, Erlangen, Germany) with an in-plane
resolution of 1.8 × 1.8 mmsq, a slice thickness of 8.0mm
and a slice gap of 2mm. Cardiac function was assessed on a
combination of long axis (LAX) cines (horizontal long-axis—
HLA, vertical long-axis—VLA, and left ventricular outflow
tract—LVOT cines, both sagittal and coronal) and a complete
short-axis (SAX) stack covering the left ventricle (LV) and
right ventricle (RV). All cine images were acquired at one slice
per breath-hold.

CMR image segmentation was performed manually in the
initial ∼5,000 studies by two image-analysis core laboratories as
previously described (18). The manually segmented CMR studies
were visually quality checked at the time of image annotation; 153
studies were excluded due to poor image quality.

Using this expert-annotated dataset a U-net based fully
convolutional neural network was trained to annotate the
remaining UKB CMR studies (N = 16,186) (20). Among
the automatically segmented CMR studies, we reviewed 1,569
studies with outlying measurements. Almost all cases that
had to be removed were due to the quality issues related
to incomplete LV coverage or image artefacts from mis-
triggering or poor breath-hold. Studies with segmentation failure
due to image quality issues were excluded from downstream
analysis. Overall, automatic segmentation produced robust LV
contours as indicated by the Dice scores (0.88–0.94). Details
of reproducibility performance of the automated algorithm are
available in dedicated publications (18, 21). From the SAX cine
CMR images, the LV and RV endocardial contours and LV
epicardial contours were traced in both end-diastole (ED) and
end-systole (ES) using the automated tool. From the automated
segmentation, we defined three regions of interest (ROI): LV
blood pool (LV), LV myocardium (MYO), and RV blood
pool (RV).

Conventional CMR Indices
Conventional CMR indices of cardiac structure and function
were also assessed and compared to the added value of CMR
radiomics. In particular, we automatically calculated: LV end-
diastolic volume (LVEDV), LV end-systolic volume (LVESV),
RV end-diastolic volume (RVEDV), RV end-systolic volume
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FIGURE 1 | Study cohorts selection process. IHD, Ischaemic heart disease; MI, myocardial infarction; IS, ischaemic stroke.
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(RVESV), LV stroke volume (LVSV), RV stroke volume (RVSV),
LV ejection fraction (LVEF), RV ejection fraction (RVEF),
LV mass (LVM). The CMR parameters were subsequently
indexed to the subject’s body surface area (BSA) and used for
further analysis.

CMR Radiomics Analysis
From the three segmented ROIs in ED and ES we extracted
radiomics shape and signal intensity-based features using the
open-source packages Pyradiomics version 2.2.0 (22).

Radiomics shape features quantify size and shape of the
segmented ROIs and have the potential to capture subtle
geometrical and morphological alterations of the cardiac
structures beyond those described by conventional CMR indices.
Shape features include conventional indices, such as cavity
volume, and more advanced geometric quantifiers, such as
sphericity, compactness, and elongation.

Signal intensity-based radiomics features are grouped into
two categories: first-order and texture features. These features
describe the global distribution and pattern of voxel signal
intensity (SI) and may potentially capture changes in cardiac
tissue induced by disease processes.

In particular, first-order radiomics describe the global SI
distribution within the ROIs by plotting a histogram and without
focusing on their spatial relationships. The global SIs distribution
is described using simple quantifiers, such as mean, median,
and standard deviation, and more advanced measures, such as
skewness, uniformity, or entropy.

Texture features, instead, describe the SIs patterns within
the segmented ROIs considering the relationship of the voxel
SIs to each other. Various mathematical processes are used to
quantify the complexity, coarseness and repeatability of the SI
matrix (23, 24). Texture featuresmay reflect themyocardial tissue
characteristics related to a specific disease.

It should be noted that radiomics are sensitive to intensity
variations related to the image acquisition process. Therefore, to
account for such variations and increase their repeatability, prior
to feature extraction, intensity normalisation within the heart
region was performed by means of histogram matching using as
reference one of the CMR from the UKB (25).

Radiomics Feature Selection
Radiomics shape and signal intensity-based features were
extracted from the three ROIs (LV, MYO, and RV) in ED and
ES. RV first-order and RV texture radiomics features were not
considered for the analysis as deemed not clinically relevant. This
resulted in a total of 446 radiomics features to be included in
the study.

From this subset of features a highly correlated removal
was applied as many of them were not independent and were
expected to encapsulate redundant information. Towards this
aim, we used Pearson correlation coefficient higher than 0.9,
and we retained only one of the correlated features, resulting
in 261, 267, 267, and 265, on average per fold, for IHD, MI,
cerebrovascular disease and IS, respectively.

After this data pre-processing, a ML grid search pipeline
was performed, including a feature selection step. KBest

algorithm based on mutual information was selected among
different feature selection (FS) techniques due to its robustness
and performance efficiency. Other FS techniques, such
Sequential Feature Selection (SFS) were discarded due to
high computational times and equal performance.

Radiomics Signatures and ML Modelling
Our study aimed to identify radiomics signatures that best
describe the cardiac structural and tissue changes occurring in
ischaemic heart and brain diseases to differentiate subjects with
these conditions from healthy.

For that purpose, the most informative sets of k radiomics
features were selected based on the FS algorithm described in the
previous section and fed toML classifiers to discriminate between
each disease vs. control group (healthy cohort). Data from the
different cohorts was properly under sampled to match equally
distributed cohorts for comparison.

Among different state-of-the-art ML algorithms evaluated
using a simple splitting of the dataset [support vector machines
(SVM), random forests (RF), XGboost, decision trees, and
multilayer perceptron and naive Bayes classifier], SVM and RF
performed consistently better. Therefore, we decided to use these
two algorithms to build ourMLmodels. In this paper, we describe
only the results obtained with SVM and RF in a 10-fold cross
validation grid search and hyperparameter tunning, and tested
in a 10-fold unseen dataset (further details about the ML models
building are described in the Appendix).

For clinical validation, we compared the radiomics signatures
to similar ML models based on conventional CMR indices.
To further test the potential incremental value of radiomics,
we also evaluated the performance achieved using a combined
model containing both radiomics and traditional metrics for each
disease group.

Paired t-test was used to assess the statistical significance
of the differences between radiomics and combined models
vs. conventional indices. A p < 0.05 was considered to be
statistically significant. The models’ performance was assessed
using the receiver operating characteristic (ROC) curve analysis
and area under the ROC curve (AUC) score. Group differences
were evaluated using independent t-tests after assessing the
normal distribution of the data. Statistical analysis was performed
using Python Version 3.6.4 (Python Software Foundation,
Delaware USA).

RESULTS

Baseline Characteristics
At the end of the selection process, the subjects with IHD,
cerebrovascular disease, MI, and IS available for the analysis were
779, 267, 525, and 107, respectively.

Baseline characteristics and CMR indices for each disease
group and healthy controls are shown in Table 1.

The average age was similar across the disease groups (from
67 ± 6 to 68 ± 6 years) and it was significantly higher than
the healthy controls (59 ± 7 years). The majority of participants
were male, while the highest percentage of female subjects was
observed in cerebrovascular disease and IS cohorts (37 and 35%,
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TABLE 1 | Baseline characteristics and conventional CMR measurements for each disease group and the healthy controls.

Parameter IHD

(n = 779)

Cerebrovascular

disease

(n = 267)

MI

(n = 525)

IS

(n = 107)

Healthy

(n = 779)

Baseline characteristics

Age, years 67 ± 6* 68 ± 6* 67 ± 6* 67 ± 7* 59 ± 7

Female gender, n (%) 210 (27)* 99 (37)* 89 (17)* 37 (35)* 420 (54)

Body mass index (kg/m2 ) 28.1 ± 4.3* 27.8 ± 4.6* 28.2 ± 4.3* 28.1 ± 4.7* 24.4 ± 2.7

Body surface area (m2 ) 1.9 ± 0.2* 1.9 ± 0.2* 1.9 ± 0.3* 1.9 ± 0.2* 1.8 ± 0.2

Diabetes, n (%) 70 (9) 17 (6) 41 (8) 6 (6) –

Hypertension, n (%) 343 (44) 96 (36) 255 (48) 40 (37) –

High cholesterol, n (%) 452 (58)† 119 (44) 328 (62)† 42 (39) –

Smoker, n (%) 62 (8) 16 (6) 52 (10) 9 (8) –

Conventional CMR indices

LVEDV index (ml/m2 ) 81.2 ± 17.1 76.1 ± 14.4* 86.0 ± 19.2* 75.9 ± 15.0* 81.1 ± 14.0

LVESV index (ml/m2 ) 35.01 ± 12.9* 31.6 ± 8.5 39.2 ± 15.7* 31.7 ± 8.6 33.3 ± 8.0

LVSV index (ml/m2 ) 46.2 ± 8.6* 44.5 ± 8.8* 46.8 ± 8.9 44.2 ± 9.0* 47.8 ± 9.1

LVM index (g/m2) 48.9 ± 9.5* 46.9 ± 9.3 51.1 ± 9.8* 46.3 ± 8.0 45.2 ± 9.5

RVEDV index (ml/m2 ) 82.9 ± 14.8* 80.2 ± 15.8* 84.6 ± 14.9 80.0 ± 15.2* 85.9 ± 16.9

RVESV index (ml/m2 ) 36.2 ± 9.2* 35.2 ± 9.5* 37.4 ± 9.0 35.0 ± 9.0* 38.5 ± 11.2

RVSV index (ml/m2 ) 46.6± 8.9 44.9 ± 9.7* 47.2 ± 9.3 44.9 ± 9.9 47.4 ± 8.5

LVEF (%) 57.7 ± 7.6* 58.7 ± 6.3 55.3 ± 8.4* 58.5 ± 6.3 59.1 ± 5.7

RVEF (%) 56.5 ± 6.5 56.2 ± 6.9 55.9 ± 6.6 56.2 ± 7.1 55.7 ± 6.2

IHD, Ischaemic heart disease; MI, Myocardial infarction; IS, Ischaemic stroke; LVEDV, left ventricle end-diastolic volume; LVESV, left ventricle end-systolic volume; LVSV, left ventricle

stroke volume; LVM, left ventricle mass; RVEDV, right ventricle end-diastolic volume; RVESV, right ventricle end-systolic volume; RVSV, right ventricle stroke volume; LVEF, left ventricle

ejection fraction; RVEF, right ventricle ejection fraction. Data are presented as means ± standard deviations for continuous variable and count (%) for categorical variables.

*p < 0.001 when compared with healthy controls.
†
p < 0.001 when compared with cerebrovascular disease and IS.

respectively). Furthermore, the distribution of cardiovascular
risk factors (diabetes, hypertension, and smoking) was similar
across the disease groups, except for hypercholesterolaemia,
which percentage was significantly higher in IHD and MI.

Subjects with previousMI had significantly higher LV volumes
and LVM index and lower LVEF values than the healthy control.
A similar pattern was observed in the more heterogeneous
cohort of IHD, where significantly lower RV volumes were
also observed.

IS and cerebrovascular disease, instead, had the lowest indexed
LVEDV and RV volumes among the disease subsets, while the
cardiac function indices were similar to the healthy group.

Comparing the Discriminative
Performance of Radiomics Only,
Conventional CMR Indices, and Combined
Models
In comparison to conventional CMR indices, radiomics
provided a better degree of discrimination between healthy
and subjects with IHD (0.82 AUC for radiomics vs. 0.75 for
conventional indices) and cerebrovascular disease (0.79 vs.
0.77; Figure 2).

A marginally higher degree of discrimination with radiomics
model was observed in MI and IS groups (MI: 0.87 AUC for

radiomics vs. 0.79 for conventional indices; IS: 0.81 AUC for
radiomics vs. 0.72 for conventional indices; Figure 3).

The degree of discrimination achieved by the combined
models was similar to that observed with radiomics only
(Supplementary Figure 1). In particular, the best performing
combined models provided significant incremental value over
conventional CMR indices for all disease groups, similar to that
achieved with radiomics only (Table 2).

Identifying Radiomic Signatures for Each
Disease Group
The final number of features selected for the model was 261 in
IHD, 267 in MI, 267 in cerebrovascular disease, and 265 in IS,
and included both shape, first-order and texture radiomics.

Overall, the most informative features were those extracted
from the LV blood pool region and the LV myocardium.
In contrast, the RV cavity features had a minor role in
discriminating the disease vs. healthy subgroups (Figure 4).

As the number of the most discriminative radiomics was high,
we analysed the importance of each feature in the model, based
on the mean weight value, to identify specific patterns for each
disease group.

We observed that both in IHD and MI, on average,
shape features gave clearly more contribution per unit
than intensity-based features. Instead, in cerebrovascular
disease and IS, we did not observe a net dominance of
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FIGURE 2 | Receiver operating curves for radiomics vs. conventional CMR indices models in IHD and Cerebrovascular Disease groups. IHD, ischaemic heart disease;

AUC, Area under the curve.

one type of features over the other, although first-order
and shape features were slightly more contributing to the
signature (Figure 5).

This finding suggests that cardiac and cerebral ischaemic
processes might impact the cardiac structures differently, and
result in distinct cardiac imaging phenotypes on CMR radiomic
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FIGURE 3 | Receiver operating curves for radiomics vs. conventional CMR indices models in MI and IS groups. MI, myocardial infarction; IS, ischaemic stroke; AUC,

Area under the curve.

analysis. Furthermore, there appears to be similar patterns
of cardiac alterations between IHD and MI and between
cerebrovascular disease and IS.

Such similarities were confirmed on further analysis of
the radiomic features for each group. In this paper, we
summarised only the results from the analysis of top-ranked
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TABLE 2 | Comparing the degree of discrimination achieved using radiomics only,

conventional CMR indices and both (combined model) for each disease group.

Model Radiomics Conventional

CMR

indices

Combined p-value

IHD

SVM 0.82 (0.03) 0.75 (0.04) 0.83 (0.03) <0.05

Random Forest 0.80 (0.04) 0.69 (0.05) 0.82 (0.04) <0.05

Cerebrovascular disease

SVM 0.79 (0.05) 0.77 (0.06) 0.81 (0.05) <0.05

Random Forest 0.76 (0.05) 0.69 (0.07) 0.79 (0.02) <0.05

MI

SVM 0.87 (0.02) 0.79 (0.05) 0.86 (0.02) <0.05

Random Forest 0.83 (0.04) 0.77 (0.03) 0.83 (0.02) <0.05

IS

SVM 0.81 (0.10) 0.72 (0.11) 0.81 (0.10) 0.08

Random Forest 0.77 (0.08) 0.67 (0.07) 0.78 (0.09) <0.05

The model performance is presented as mean AUC (STD). The paired t-test statistical

significance is used to compare combined model vs. conventional CMR indices.

IHD, Ischaemic heart disease; MI, myocardial infarction; IS, ischaemic stroke; SVM,

Support Vector Machines; RF, Random Forests; AUC, Area under the curve; STD,

Standard deviation.

features, for which we provided some possible clinically
relevant interpretations.

Comparing Radiomic Features Between
IHD and MI
From the analysis of the top-ranked features, we found that shape
radiomics were the most relevant in IHD and MI.

There were several features common to both conditions. For
instance, the maximum 2D diameter of the LV and myocardium
(slice/column/row), myocardial cavity volume, and surface area
to volume ratio were highly featured in both diseases.

The direction of these features was also similar between
the two conditions, reflecting common patterns of cardiac
alterations. For instance, in both groups, there were larger cavity
dimensions in end-diastole and end-systole compared to the
healthy controls, as it was the volume of the LV myocardium at
end-diastole. The mean value of the selected shape features for
each disease group are shown in Table 3.

The prominence of these LV shape radiomics features
indicates the tendency for the ischaemic cardiac disease to result
in gross alterations of the LV geometry.

FIGURE 4 | Percentage of radiomic features extracted from each region of interest (ROI) in each disease group. IHD, ischaemic heart disease; MI, myocardial

infarction; IS, ischaemic stroke; LV, left ventricle; MYO, myocardium; RV, right ventricle.
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FIGURE 5 | The overall contribution of first-order, shape, and texture features to a signature in IHD, cerebrovascular disease, MI and IS groups, based on the mean

weight value per each feature type. IHD, ischaemic heart disease; MI, myocardial infarction; IS, ischaemic stroke.

TABLE 3 | Selected top-ranked most discriminative shape features for IHD and MI

compared to healthy controls.

Radiomic

features

IHD MI Healthy controls

Max 2D diameter

slice (MYO) (ED)

75.767 ± 9.479 77.216 ± 8.121 72.632 ± 6.522

Max 2D diameter

column (MYO) (ES)

87.168 ± 8.470 89.267 ± 8.776 83.676 ± 7.843

Surface area to

volume ratio

(MYO) (ED)

0.420 ± 0.055 0.413 ± 0.052 0.463 ± 0.059

Max 2D diameter

column (MYO) (ED)

102.662 ± 8.627 104.478 ± 8.520 99.523 ± 8.307

Max 2D diameter

slice (MYO) (ES)

66.201 ± 9.275 67.968 ± 8.713 62.503 ± 8.340

Max 2D diameter

row (MYO) (ES)

86.460 ± 8.939 88.389 ± 8.990 83.389 ± 9.092

Volume (MYO) (ED) 91282 ± 22146 96595 ± 22534 78768 ± 20704

Least axis (MYO)

(ES)

61.171 ± 6.379 63.351 ± 6.717 59.085 ± 5.528

Data are presented as mean ± standard deviation. IHD, ischaemic heart disease; MI,

myocardial infarction; MYO, myocardial; ED, end-diastole; ES, end-systole. All differences

are statistically significant when compared with healthy controls (Bonferroni adjusted

p < 0.05).

Comparing Radiomic Features Between
Cerebrovascular Disease and IS
Several shape, first-order, and texture radiomics were among
the top-ranked features contributing to a radiomic signature in
cerebrovascular diseases and IS.

Skewness, kurtosis, and sphericity of the LV were the most
relevant features in both conditions. Furthermore, the direction
of the changes described in comparison to healthy control was
similar between the two groups.

For instance, the sphericity of the LV myocardium at end-
diastole was greater amongst both disease groups compared
with healthy individuals, indicating a less elliptical and more
spherical chamber.

Furthermore, in both groups, there was less skewness in the
distribution of signal intensity levels and a lower number of
extreme intensities (kurtosis) within the LV blood pool region
than the healthy controls.

The combination of all these findings indicate that ischaemic
cerebrovascular diseases may be associated with subtle alterations
both in the geometry and intra-cardiac haemodynamics of
the LV.

Finally, texture radiomics played a significant role in
improving disease discrimination in both cerebrovascular

Frontiers in Cardiovascular Medicine | www.frontiersin.org 10 September 2021 | Volume 8 | Article 716577

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Rauseo et al. CMR Radiomic in Brain-Heart Ischaemia

diseases and IS. Among the most informative texture radiomics,
there were features describing the distribution of signal intensity
values (e.g., low grey level run emphasis, large area emphasis),
the textural heterogeneity (e.g., grey-level non uniformity, run-
length non uniformity), and the relationship between voxel
intensity and neighbourhood (e.g., large and small dependence
high grey level emphasis). These features allowed amore granular
tissue characterisation of the LV and myocardial tissue structure
by quantifying the patterns of inter-voxel signal intensities. The
analysis of texture radiomics revealed subtle differences at the
tissue level between cerebrovascular disease and IS.

For instance, in cerebrovascular disease, there was
less homogeneity among run lengths in the myocardial
structure (run-length non-uniformity) as compared to the
healthy comparators.

In IS, instead, there was lower variability of grey-level intensity
values (grey-level non-uniformity) than healthy participants.

TABLE 4 | Selected top-ranked most discriminative shape, first-order and texture

features for cerebrovascular disease and ischaemic stroke (IS) compared to

healthy controls.

Radiomic features Disease group Healthy controls

Cerebrovascular disease

Skewness LV ED (F) −0.619 ± 0.170* −0.742 ± 0.162

Sphericity MYO ED (S) 0.265 ± 0.021* 0.253 ± 0.017

Kurtosis LV ED (F) 2.390 ± 0.289* 2.610 ± 0.303

Run length non-uniformity 1,010.998 ± 214.912 957.296 ± 179.239

MYO ED (T)

Ischaemic stroke (IS)

Skewness LV ED (F) −0.593 ± 0.165* −0.742 ± 0.162

Sphericity MYO ED (S) 0.266 ± 0.020* 0.253 ± 0.017

Kurtosis LV ED (F) 2.355 ± 0.304* 2.610 ± 0.303

Grey level non-uniformity LV ES (T) 21.665 ± 6.258 22.472 ± 5.574

Data are presented as mean ± standard deviation. S, shape radiomics; F, first-order

radiomics; T, texture radiomics; LV, left ventricle; RV, right ventricle; MYO, myocardial;

ED, end-diastole; ES, end-systole.

*Significant difference when compared with healthy controls (Bonferroni adjusted

p < 0.05).

These observations indicate that cerebrovascular disease may
be associated with more textural heterogeneity of the LV
myocardium than IS. These findings suggest that, despite some
similarities, there may be some distinct alterations at the
tissue level in the two conditions. The mean value of the
selected radiomic features for each disease group are shown
in Table 4.

Comparing Radiomic Signatures Between
IHD and Cerebrovascular Disease
By referring to the constituent features within the radiomics
signature for IHD and cerebrovascular disease, we were able to
consider potential common biological pathways linking the two
conditions (Table 5).

In general, radiomics shape features appearedmore important
for the signatures of the primary cardiac conditions (IHD and
MI), indicating that gross anatomic alterations are important
characteristics of these diseases. These features, instead, were less
prominent within the cerebrovascular disease signatures.

There were also commonalities in the observedmorphological
alterations. For example, all disease categories considered showed
greater sphericity and lower surface area to volume ratio of the
LV myocardium compared to healthy cases, indicating a more
spherical less elongated LV cavity shape.

Furthermore, MI and IHD showed significantly larger least
axis of the LV myocardium at end-systole compared to controls,
indicating a greater thickness of the myocardial wall in these
conditions compared to healthy cases. Such changes were
significantly greater in MI subjects compared to those with
cerebrovascular diseases.

Thus, both IHD and cerebrovascular diseases had a more
spherical LV shape. For IHD and MI, there was also significantly
greater thickness of the LV myocardium and in general more
prominence of shape alterations in the radiomics signature than
with cerebrovascular disease.

For both IHD and cerebrovascular disease, intensity-
features appeared important components of the radiomics
signature, in particular skewness and kurtosis. All the disease
categories considered had significantly less variation in signal
intensity levels (skewness) within the LV blood pool region

TABLE 5 | Selected radiomic features for each disease group compared to healthy controls.

Radiomic features IHD MI Cerebrovascular

disease

IS Healthy

Skewness LV (ED) (F) −0.638 ± 0.173* −0.649 ± 0.173* −0.619 ± 0.170* −0.593 ± 0.165* −0.742 ± 0.162

Kurtosis LV (ED) (F) 2.435 ± 0.308* 2.452 ± 0.320* 2.390 ± 0.289* 2.355 ± 0.304* 2.610 ± 0.303

Sphericity MYO (ED) (S) 0.265 ± 0.021* 0.264 ± 0.021* 0.265 ± 0.021* 0.266 ± 0.020* 0.253 ± 0.017

Surface Area to volume ratio MYO (ES) (S) 0.279 ± 0.038* 0.281 ± 0.039* 0.279 ± 0.043* 0.279 ± 0.037* 0.298 ± 0.035

Surface Area to volume ratio MYO (ED) (S) 0.420 ± 0.055* 0.413 ± 0.052* 0.425 ± 0.059* 0.422 ± 0.053* 0.463 ± 0.059

Least axis MYO (ES) (S) 61.171 ± 6.379* 63.351 ± 6.717*† 60.041 ± 5.676 59.905 ± 5.544 59.085 ± 5.528

Data are presented as mean ± standard deviation. IHD, ischaemic heart disease; MI, myocardial infarction; IS, ischaemic stroke; S, shape radiomics; F, first-order radiomics; LV, left

ventricle; RV, right ventricle; MYO, myocardial; ED, end-diastole; ES, end-systole.

*Significant difference when compared with healthy controls (Bonferroni adjusted p < 0.05).
†
Significant difference when compared with the other disease groups (Bonferroni adjusted p < 0.05).
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compared to healthy controls. Similarly, all the disease
categories also showed significantly less Kurtosis (“pointiness”)
of the LV blood pool intensities compared to controls.
These prominent differences in signal intensity patterns within
the LV blood pool may reflect common alterations in
intra-cardiac haemodynamic associated with both IHD and
cerebrovascular disease.

DISCUSSION

Summary of Findings
This study demonstrates that CMR radiomics can capture
changes in cardiac morphology, tissue or local structure in
ischaemic heart disease and cerebrovascular disease even when
ischaemia has not resulted in organ damage in form of MI
or stroke.

Although conventional CMR indices identified some
significant differences between the disease groups and the
control, radiomics improved the quantification of alterations in
both cardiac structure and tissue.

Radiomics only and combined models provided similar
incremental value over conventional indices in discriminating
MI and IS from healthy. Such value remained significant,
albeit to a lesser extent, in identifying changes in more
heterogeneous clinical pictures, such as IHD and ischaemic
cerebrovascular diseases. This finding suggests that, although
the clinical presentation of cardiac and cerebral ischaemia may
vary, there may be common cardiac alterations detectable on
radiomic analysis.

In particular, we observed that in cardiac ischaemia shape
radiomics detected common changes in size and geometry
of the LV and myocardium. In cerebral ischaemia, instead,
the combination of shape, first-order and texture radiomics
identified subtle alterations both in the geometry and tissue
structure of the LV and myocardium, improving the disease
discrimination significantly.

Furthermore, it appeared that there was a notable overlap
of the radiomics signatures of IHD and cerebrovascular
disease. This finding may reflect common risk factors, such
as cardiometabolic morbidities, or alternative shared biological
pathways implicated in both conditions.

The common cardiac alterations detected by radiomic features
could represent the biological links between the brain and
heart during the ischemic processes. Such alterations could
also represent a valuable imaging marker for identifying
individuals with previous cerebral ischaemia at risk of developing
cardiac complications.

Radiomic Analysis Improve Diagnosis of
Cardiac and Cerebral Ischaemia
Our study confirms the capacity of CMR radiomics to improve
the accuracy of diagnosing important diseases over conventional
image analysis.

Previous studies have demonstrated the ability of radiomics
to accurately diagnose myocardial infarction on non-enhanced
images. For instance, Baessler et al. (26) showed that five
independent texture radiomics allowed to differentiate

ischaemic scar from normal myocardium on cine CMR
images. Furthermore, Larroza et al. demonstrated that texture
analysis could discriminate acute MI from chronic MI both
on contrast and cine CMR images, where MI is often visually
imperceptible. In particular, the combinantion of 75 texture
features provided high disease discrimination on cine CMR
images (27).

Similarly, we found that radiomic analysis of cine CMR images
allowed to discriminate MI from healthy comparators with
significantly superior performance to conventional CMR indices.

In contrast to the previous studies, in this work we analysed
all three types of radiomic features. We found that in MI, shape
radiomics were the most important feature in the classification
models. Similar findings were observed in IHD group, which
included a large spectrum of clinical conditions, that vary from
stable angina to acute coronary syndrome (ACS).

The analysis of shape features revealed similar changes in
size, particularly in the long axis, and in the geometry of the
LV myocardium, between IHD and MI.These findings might
indicate that cardiac ischaemia, whether or not it results in organ
damage, might lead to typical cardiac remodelling patterns that
involve the LV globally.

In all the clinical scenarios characterising IHD, the myocardial
energy imbalance plays a central role in leading to ischaemia (28).
We hypothesise that the alterations found in IHD may be due
to a chronic reduction of the coronary flow reserve, which could
lead to a lower supply of oxygen to the myocardium and, over the
time, to LV myocardial remodelling (29).

Therefore, the radiomic signature for IHD may represent an
additional non-invasive imaging marker of cardiac ischaemia.
It might improve the diagnosis of a wide variety of conditions,
including angina pectoris and silent ischaemia, without using late
gadolinium enhancement (LGE) tecnique.

Our study confirms also the potential of radiomics to identify
cardiac changes associated with important conditions that do not
affect the heart exclusively.

We found that radiomic-based models provided high degrees
of discrimination of ischaemic cerebrovascular disease and IS.
In particular, we observed that the combination of shape,
first-order and texture radiomics in the classification models
led to the highest accuracy of diagnosis. Perhaps, intensity-
based radiomics allowed more granular disctinction of cerebral
ischaemia enhancing further the diagnostic value of the
classification models.

Similarly, Cetin et al. (30) found that first-order and texture
radiomics significantly improved detection of early effect of
certain cardiovascular risk factors on cardiac structure and tissue,
such as diabetes and smoking.

In particular, the median intensity of the myocardium
and grey level non-uniformity were described as the single
most discriminative radiomic to identify diabetes and current
smokers, respectively.The grey level non-uniformity has
been also described as the single most important feature
in identifying hypertrophic cardiomyopathy (HCM) (31).
Interestingly, we found that this textural radiomic feature
was among the most discriminative features in cerebral
ischaemia, particularly in IS. Probably such similarities might
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be due to common patterns of tissue fibrosis associated with
those particular conditions that are reflected in the observed
texture features.

Finally, it should be noted that although some features
were more representative than others, we observed that their
combination significantly improved the diagnostic accuracy
in each disease group. We speculate that the clinical and
pathophysiological heterogeneity of the conditions examined
might translate into a complex variety of subtle cardiac
changes reflected in the observed features. Therefore, it was the
combination of all these alterations that made a distinct signature
for cardiac and cerebral ischaemia.

CMR Radiomics Analysis to Improve
Understanding of the Brain-Heart
Interactions
CMR radiomics analysis uncovered common patterns of
cardiac alterations in ischaemic heart and cerebrovascular
diseases, which might represent the imaging markers of the
biological interactions between brain and heart during the
ischaemic processes.

Such similarities might reflect shared cardiovascular risk
factors involved in the common brain-heart disease crosstalk,
probably mediated by atherosclerosis and arteriosclerosis (32).

Furthermore, there is growing evidence suggesting that
subjects who suffered cerebral ischaemic events might be highly
vulnerable to cardiac complications, even in the absence of
risk factors or pre-existing heart disease (5, 33). Although
most of the cardiac alterations tend to resolve entirely over
the following weeks from an acute event, some of them
can persist, causing poor early and long-term outcomes and
death (8–10, 34).

This suggests that alternative mechanisms of brain-heart
interactions, not mediated by shared risk factors, might be
involved during the ischæmic processes. For instance, high
circulating catecholamine level, sympathetic/parasympathetic
unbalance, and stroke-related systemic inflammation mediated
by cytokines, have been described as possible causes of brain
damage-induced cardiac dysfunction. Other mechanisms
involved in the associations include dysfunction of the
hypothalamic-pituitary-adrenal axis, brain blood barrier
damage, and gut microbiome dysbiosis (33, 35).

Previous studies have suggested that endothelial
inflammation, oxidative stress, and catecholamine release
induced by ischaemic brain injury may lead to chronic
myocardial dysfunction and remodelling, accelerating
atherosclerosis, and vasoconstriction of the coronary arteries
(35). Furthermore, there is growing evidence that even
subclinical cardiac dysfunctions, such as diastolic dysfunction,
might be associated with clinical stroke or silent infarcts on
magnetic resonance imaging (MRI) scans, especially in older
adults (36).

Whether such cardiac dysfunctions are triggered by the
ischaemic brain damage, are unrelated complications, or just
the underlying causes is still unclear and require further

investigations. Nevertheless, independently of the pathogenesis,
these associated cardiac abnormalities may become the substrate
of future cardiovascular events, such as heart failure or CAD, and
further affect patients’ outcome (37, 38).

Cardiac imaging represents a valuable diagnostic tool for
identifying the aetiology of cerebrovascular disease and detecting
cardiac comorbidities. Themain long-term cardiac abnormalities
described on conventional images are the LV systolic and
diastolic dysfunction, which in conjunction with the increased
burden of arrhythmia, lead to cardiac remodelling (8).

We found that cerebral ischaemia was associated mainly
with changes in the geometry and tissue structure of the
LV and myocardium, the latter affecting the cardiac texture
appearance in CMR images. In particular, we found that
individuals with ischaemic cerebrovascular disease had
less heterogeneous myocardial tissue textures than healthy
comparators. We may speculate that these features represent
different levels of myocardial damage in these patients. Perhaps,
the toxic effect of catecholamines on the myocardium and
the subsequent neurogenic hypertension are two possible
mechanisms that may lead to chronic myocardial dysfunction
and remodelling (39).

Such subtle cardiac alterations, especially at the tissue
level, often remain undetected to traditional CMR metrics or
echocardiography. In our study, CMR radiomics provided
deeper image phenotyping than conventional indices
improving detection of changes in cardiac structure and tissue
associated with cerebral ischaemia, thus making the diagnosis
more precise.

Radiomics analysis might improve our understanding of
cerebral ischemia’s early effects on the cardiac structure
and tissues. Identifying imaging markers of adverse brain-
heart disease at an early stage may enable improved clinical
management and reduce mortality in patients with previous
cerebral ischaemia. These markers may represent a potential
intervention target to mutually protect the heart after stroke
and the brain from further damage. An integrated approach
based on appropriate risk stratification and early screening for
cardiac dysfunction, coupled with aggressive risk factor control
and early treatment, is essential in managing patients with an
ischemic event.

Study Limitations and Future Directions
To our knowledge, this is the first study using CMR radiomics
to study the cardiac changes associated with cardiac and cerebral
ischaemia. We used clinical and imaging information from the
UKB dataset, which has extensive data available from each
participant, making it an excellent resource to address brain-
heart interactions. We used a combination of ICD-10 and ICD-
9 codes to select our study populations to avoid concerns
about the self-reported conditions’ accuracy and objectivity.
However, the estimated prevalence and diagnostic accuracy of
certain conditions, such as angina or TIA, may be affected
by the hospital information system and the quality of the
documentation recorded.
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Furthermore, the identification of participants with MI
was only based on the clinical diagnosis. However, further
information on the myocardial scar extent was not available in
the UKB dataset. Therefore, in this study we could not determine
whether there was a correlation between the radiomic features
and the myocardial scarring extent.

There were fewer subjects with cerebrovascular disease
and IS than those with IHD and MI. Therefore, despite the
significant discriminatory power of radiomics-based models
observed in cerebral ischaemic conditions, these results must be
interpreted cautiously.

Radiomics are highly dependent on image acquisition factors
that can greatly modify texture and histogram-based intensity
values. Different centres’ datasets should be evaluated to confirm
validity of these machine learning algorithms in a large-
scale application.

Furthermore, the number of radiomics needed to achieve
better performances can be considered large. Despite the
automatic and fast procedure to perform this test in a real clinical
scenario, reduction of these subsets must be achieved in the
future, to build more interpretable and explainable tools.

We did not match the healthy comparators and the
disease groups on a per-patient basis. Therefore, we must
acknowledge that the higher proportion of females and the
younger age of the healthy controls might have partially
influenced the radiomic values and thus the disease prediction.
However, these limitations were mitigated by the fact that
the control subjects, according to the robust definition of
“health” proposed by Petersen et al. (18), did not have any
risk factors or conditions that might have affected the heart
more significantly.

Finally, we did not study the correlation between radiomics
and patients’ risk factors and time from the ischaemic event, as
that was beyond this paper’s purpose. More extensive prospective
studies using external validation cohorts and accounting for
confounding factors are needed to determine these models’
clinical utility.

CONCLUSIONS

This study demonstrates the potential value of CMR radiomics
over conventional indices in detecting subtle cardiac changes
associated with chronic ischaemic processes involving the brain
and heart, even in the presence of more heterogeneous clinical
pictures. Radiomics analysis might improve our understanding
of the effects of cerebral ischaemia on cardiac structure
and tissue contributing to shed light on the complex brain-
heart interactions.
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