1,584 research outputs found
Current ecological understanding of fungal-like pathogens of fish: what lies beneath?
Despite increasingly sophisticated microbiological techniques, and long after the first discovery of microbes, basic knowledge is still lacking to fully appreciate the ecological importance of microbial parasites in fish. This is likely due to the nature of their habitats as many species of fish suffer from living beneath turbid water away from easy recording. However, fishes represent key ecosystem services for millions of people around the world and the absence of a functional ecological understanding of viruses, prokaryotes, and small eukaryotes in the maintenance of fish populations and of their diversity represents an inherent barrier to aquatic conservation and food security. Among recent emerging infectious diseases responsible for severe population declines in plant and animal taxa, fungal and fungal-like microbes have emerged as significant contributors. Here, we review the current knowledge gaps of fungal and fungal-like parasites and pathogens in fish and put them into an ecological perspective with direct implications for the monitoring of fungal fish pathogens in the wild, their phylogeography as well as their associated ecological impact on fish populations. With increasing fish movement around the world for farming, releases into the wild for sport fishing and human-driven habitat changes, it is expected along with improved environmental monitoring of fungal and fungal-like infections, that the full extent of the impact of these pathogens on wild fish populations will soon emerge as a major threat to freshwater biodiversity
Theory of fast field-cycling NMR relaxometry of liquid systems undergoing chemical exchange
This work was supported by the European Union Horizon 2020 research and innovation programme under grant agreement no. 668119 (project ‘IDentIFY’), and was performed under the auspices of the COST Action AC15209, EURELAX.Peer reviewedPublisher PD
Recommended from our members
Investigating the role of the visual system in solving the traveling salespersonproblem
This article used an empirical experiment and a computationalmodel to test the hypothesis that humans rely on the visualsystem to solve the traveling salesperson problem (TSP). Wetested two consequences of this hypothesis: (1) humans shouldperform better on Euclidean TSP than not–Euclidean TSP; (2)a model of the visual system should account for performance inEuclidean TSP. Participants were asked to solve Euclidean ornot–Euclidean TSP, and a pyramid model of the visual systemwas used to solve the same tours as the humans. The resultsshow that deviations from the optimal tour were smaller in Eu-clidean problems than in not–Euclidean problems, and the fitof the pyramid model to human performance was worse onnot–Euclidean problems then on Euclidean problems. Theseresults suggest that participants solve Euclidean problems withthe visual system, but that other mechanisms are needed to suc-cesfully solve non–visual problems
Modular enhancement of circularly polarized luminescence in Pd2A2B2 heteroleptic cages
Metal-mediated assembly allows us to combine an achiral emissive ligand A with different chiral ligands (such as B) in a non-statistical fashion, obtaining Pd2A2B2 heteroleptic cages showing circularly polarized luminescence (CPL). By using the ‘shape complementary assembly’ (SCA) strategy, the cages are exclusively obtained as cis-Pd2A2B2 stereoisomers, as confirmed by NMR, MS and DFT analyses. Their unique chiroptical properties derive from the synergy of all the building blocks. Ligand B imparts the chiral information of its aliphatic backbone, comprising two stereogenic sp3 carbon centres, to the overall structure, causing CD and CPL signal induction for the chromophore on ligand A. The heteroleptic cage shows CPL with a |glum| value of 2.5 × 10−3, which is 3-times higher than that for a progenitor based on aromatic helical building block H, thus opening a rational route towards optimizing the CPL properties of self-assembled nanostructures in a modular way
Dynamic Optimized Bandwidth Management for Teleoperation of Collaborative Robots
A real-time dynamic and optimized bandwidth management algorithm is proposed and used in teleoperated collaborative swarms of robots. This method is effective in complex teleoperation tasks, where several robots rather than one are utilized and where an extensive amount of exchanged information between operators and robots is inevitable. The importance of the proposed algorithm is that it accounts for Interesting Events (IEs) occurring in the system\u27s environment and for the change in the Quality of Collaboration (QoC) of the swarm of robots in order to allocate communication bandwidth in an optimized manner. A general dynamic optimized bandwidth management system for teleoperation of collaborative robots is formulated in this paper. The suggested algorithm is evaluated against two static algorithms applied to a swarm of two humanoid robots. The results demonstrate the advantages of dynamic optimization algorithm in terms of task and network performance. The developed algorithm outperforms two static bandwidth management algorithms, against which it was tested, for all performance parameters in 80% of the performed trials. Accordingly, it was demonstrated that the proposed dynamic bandwidth optimization and allocation algorithm forms the basis of a framework for algorithms applied to real-time highly complex systems
- …