17,199 research outputs found
One-loop non-renormalization results in EFTs
In Effective Field Theories (EFTs) with higher-dimensional operators many
anomalous dimensions vanish at the one-loop level for no apparent reason. With
the use of supersymmetry, and a classification of the operators according to
their embedding in super-operators, we are able to show why many of these
anomalous dimensions are zero. The key observation is that one-loop
contributions from superpartners trivially vanish in many cases under
consideration, making supersymmetry a powerful tool even for non-supersymmetric
models. We show this in detail in a simple U(1) model with a scalar and
fermions, and explain how to extend this to SM EFTs and the QCD Chiral
Langrangian. This provides an understanding of why most "current-current"
operators do not renormalize "loop" operators at the one-loop level, and allows
to find the few exceptions to this ubiquitous rule.Comment: Corrections made in Sec. 3.2 and Fig.
Incorporation of Spacetime Symmetries in Einstein's Field Equations
In the search for exact solutions to Einstein's field equations the main
simplification tool is the introduction of spacetime symmetries. Motivated by
this fact we develop a method to write the field equations for general matter
in a form that fully incorporates the character of the symmetry. The method is
being expressed in a covariant formalism using the framework of a double
congruence. The basic notion on which it is based is that of the geometrisation
of a general symmetry. As a special application of our general method we
consider the case of a spacelike conformal Killing vector field on the
spacetime manifold regarding special types of matter fields. New perspectives
in General Relativity are discussed.Comment: 41 pages, LaTe
Renormalization of dimension-six operators relevant for the Higgs decays
The discovery of the Higgs boson has opened a new window to test the SM
through the measurements of its couplings. Of particular interest is the
measured Higgs coupling to photons which arises in the SM at the one-loop
level, and can then be significantly affected by new physics. We calculate the
one-loop renormalization of the dimension-six operators relevant for
, which can be potentially important since
it could, in principle, give log-enhanced contributions from operator mixing.
We find however that there is no mixing from any current-current operator that
could lead to this log-enhanced effect. We show how the right choice of
operator basis can make this calculation simple. We then conclude that
can only be affected by RG mixing from
operators whose Wilson coefficients are expected to be of one-loop size, among
them fermion dipole-moment operators which we have also included.Comment: 21 pages. Improved version with h -> gamma Z results added and
structure of anomalous-dimension matrix determined further. Conclusions
unchange
Higgs Inflation as a Mirage
We discuss a simple unitarization of Higgs inflation that is genuinely weakly
coupled up to Planckian energies. A large non-minimal coupling between the
Higgs and the Ricci curvature is induced dynamically at intermediate energies,
as a simple ratio of mass scales. Despite not being dominated by the Higgs
field, inflationary dynamics simulates the `Higgs inflation' one would get by
blind extrapolation of the low-energy effective Lagrangian, at least
qualitatively. Hence, Higgs inflation arises as an approximate `mirage' picture
of the true dynamics. We further speculate on the generality of this phenomenon
and show that, if Higgs-inflation arises as an effective description, the
details of the UV completion are necessary to extract robust quantitative
predictions.Comment: 21 pages, 2 figure
Universality of Quantum Gravity Corrections
We show that the existence of a minimum measurable length and the related
Generalized Uncertainty Principle (GUP), predicted by theories of Quantum
Gravity, influence all quantum Hamiltonians. Thus, they predict quantum gravity
corrections to various quantum phenomena. We compute such corrections to the
Lamb Shift, the Landau levels and the tunnelling current in a Scanning
Tunnelling Microscope (STM). We show that these corrections can be interpreted
in two ways: (a) either that they are exceedingly small, beyond the reach of
current experiments, or (b) that they predict upper bounds on the quantum
gravity parameter in the GUP, compatible with experiments at the electroweak
scale. Thus, more accurate measurements in the future should either be able to
test these predictions, or further tighten the above bounds and predict an
intermediate length scale, between the electroweak and the Planck scale.Comment: v1: 4 pages, LaTeX; v2: typos corrected, references updated, version
to match published version in Physical Review Letter
Nuclear Magnetohydrodynamic EMP, Solar Storms, and Substorms
In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear
burst produces a relatively slow magnetohydrodynarnic EMP (MHD EMP), whose
effects are like those from solar storm geomagnetically induced currents (SS
GIC). The MHD EMP electric field E < 10^-1 V/m and lasts < 10^2 sec, whereas
for solar storms E > 10^-2 V/m and lasts >10^3 sec. Although the solar storm
electric field is lower than MHD EMP, the solar storm effects are generally
greater due to their much longer duration. Substorms produce much smaller
effects than SS GIC, but occur much more frequently. This paper describes the
physics of such geomagnetic disturbances and analyzes their effects.Comment: 29 pages, 14 figures, 5 table
A Near-Infrared L Band Survey of the Young Embedded Cluster NGC 2024
We present the results of the first sensitive L band (3.4 micron) imaging
study of the nearby young embedded cluster NGC 2024. Two separate surveys of
the cluster were acquired in order to obtain a census of the circumstellar disk
fraction in the cluster. From an analysis of the JHKL colors of all sources in
our largest area, we find an infrared excess fraction of > 86%. The JHKL colors
suggest that the infrared excesses arise in circumstellar disks, indicating
that the majority of the sources which formed in the NGC 2024 cluster are
currently surrounded by, and likely formed with circumstellar disks. The excess
fractions remain very high, within the errors, even at the faintest L
magnitudes from our deeper surveys suggesting that disks form around the
majority of the stars in very young clusters such as NGC 2024 independent of
mass. From comparison with published JHKL observations of Taurus, we find the K
- L excess fraction in NGC 2024 to be consistent with a high initial incidence
of circumstellar disks in both NGC 2024 and Taurus. Because NGC 2024 represents
a region of much higher stellar density than Taurus, this suggests that disks
may form around most of the YSOs in star forming regions independent of
environment. We find a relatively constant JHKL excess fraction with increasing
cluster radius, indicating that the disk fraction is independent of location in
the cluster. In contrast, the JHK excess fraction increases rapidly toward the
central region of the cluster, and is most likely due to contamination of the K
band measurements by bright nebulosity in the central regions of the cluster.
We identify 45 candidate protostellar sources in the central regions of the NGC
2024 cluster, and find a lower limit on the protostellar phase of early stellar
evolution of 0.4 - 1.4 X 10^5 yr, similar to that in Taurus.Comment: 37 pages, 8 figures, 3 tables, To appear in the Astronomical Journa
- …