21 research outputs found

    Modification of a polypropylene feed spacer with metal oxide-thin film by chemical bath deposition for biofouling control in membrane filtration

    Full text link
    © 2018 Elsevier B.V. Surface modification of polypropylene feed spacers typical of spiral wound membrane modules was studied by generation of crystalline ZnO nanorods. A seeding layer made by deposition of ZnO nanoparticles (20–40–60 nm diameter) from aqueous dispersions served as nucleation centers for crystallization. A uniform layer of ZnO nanorods was grown on the seeding layer by chemical bath deposition from a zinc acetate solution. Biocidal activity was estimated by antibacterial tests in static liquid culture against Escherichia coli and antibiofouling tests in flow-through/cross-flow mode against a mixture of Pseudomonas fluorescens and Bacillus subtilis. Best biocidal activity was displayed by 20 nm ZnO particles, suggesting a tradeoff between surface coverage, roughness and particle size. Although the seed layer itself displayed acceptable antibacterial activity, a marked improvement was achieved by the nanorods, proving that the morphology of the deposition layer was involved in the antibacterial mechanism. Antibiofouling activity was further improved by superhydrophobic over-coating of the nanorods with octadecyl-phosphonic acid. Modified spacers reduced permeate flux decay by at least 40% compared to controls. The enhanced antibiofouling activity of crystalline ZnO nanorods, compared with amorphous ZnO nanoparticles, can be explained by a combination of the abrasive surface of the crystalline nanorods, hydrophobic repulsion and cumulative oxidation

    Correlation between capacitance and porosity in microporous carbon monoliths

    Get PDF
    Specific capacitance of carbons in aqueous KOH electrolyte seems to have two contributions, a double-layer capacitance and a pseudocapacitance. Moreover, the specific capacitance increases as the specific surface area does. Here, we report that the pseudocapacitance is associated with the K+ ion and the double-layer capacitance with both K+ and OH- ions. The former ion dominates the capacitance of a real two-electrode supercapacitor. Two microporous carbon monoliths with surface areas similar for micropores below 0.63 nm but different for larger micropores are chosen. There is a correlation between the double-layer capacitance due to those ions and the surface areas due to micropores with sizes above a certain value. It provides information on the size of those ions as they are electroadsorbed at the double layer. The dielectric permittivity associated with the K+ and OH - ion is discussed in relation to the confinement of these electroadsorbed ions in the micropores. © 2014 American Chemical Society.Financial support through the projects MAT2011-25198 and MP 1004 is gratefully acknowledged. V.B. thanks MINECO for R&C contract.Peer Reviewe
    corecore