63 research outputs found

    Refining Rates of Active Crustal Deformation in the Upper Plate of Subduction Zones, Implied by Geological and Geodetic Data: The E-Dipping West Crati Fault, Southern Italy

    Get PDF
    We investigate crustal deformation within the upper plate of the Ionian Subduction Zone (ISZ) at different time scales by (i) refining geodetic rates of crustal extension from continuous Global Navigation Satellite System (GNSS) measurements and (ii) mapping sequence of Late Quaternary raised marine terraces tectonically deformed by the West Crati normal fault, in northern Calabria. This region experienced damaging earthquakes in 1184 (M 6.75) and 1854 (M 6.3), possibly on the E-dipping West Crati fault (WCF) which, however, is not unanimously considered to be a seismogenic source. We report geodetic measurements of extension and strain rates across the strike of the E dipping WCF and throughout the northern Calabria obtained by using velocities from 18 permanent GNSS stations with a series length longer than 4.5 years. These results suggest that crustal extension may be seismically accommodated in this region by a few normal faults. Furthermore, by applying a synchronous correlation approach, we refine the chronology of understudied tectonically deformed palaeoshorelines mapped on the footwall and along the strike of the WCF, facilitating calculation of the associated fault-controlled uplift rates. Raised Late Quaternary palaeoshorelines are preserved on the footwall of the WCF indicating that “regional” uplift, likely related to the deformation associated either with the subduction or mantle upwelling processes, is affected by local footwall uplift. We show that GIS-based elevations of Late Quaternary palaeoshorelines, as well as temporally constant uplift rates, vary along the strike of the WCF, implying normal faulting activity through time. This suggests that (i) the fault slip rate governing seismic hazard has also been constant over the Late Quaternary, over multiple earthquake cycles, and (ii) our geodetically derived fault throw rate for the WCF is likely a more than reasonable value to be used over longer time scales for an improved seismic hazard assessment. Overall, we emphasize the importance of mapping crustal deformation within the upper plate above subduction zones to avoid unreliable interpretations relating to the mechanism controlling regional uplift

    Mobilization of healthy donors with plerixafor affects the cellular composition of T-cell receptor (TCR)-αβ/CD19-depleted haploidentical stem cell grafts

    Get PDF
    Background: HLA-haploidentical hematopoietic stem cell transplantation (HSCT) is suitable for patients lacking related or unrelated HLA-matched donors. Herein, we investigated whether plerixafor (MZ), as an adjunct to G-CSF, facilitated the collection of mega-doses of hematopoietic stem cells (HSC) for TCR-αβ/CD19-depleted haploidentical HSCT, and how this agent affects the cellular graft composition. Methods: Ninety healthy donors were evaluated. Single-dose MZ was given to 30 ‘poor mobilizers’ (PM) failing to attain ≥40 CD34+ HSCs/μL after 4 daily G-CSF doses and/or with predicted apheresis yields ≤12.0x106 CD34+ cells/kg recipient’s body weight. Results: MZ significantly increased CD34+ counts in PM. Naïve/memory T and B cells, as well as natural killer (NK) cells, myeloid/plasmacytoid dendritic cells (DCs), were unchanged compared with baseline. MZ did not further promote the G-CSF-induced mobilization of CD16+ monocytes and the down-regulation of IFN-γ production by T cells. HSC grafts harvested after G-CSF + MZ were enriched in myeloid and plasmacytoid DCs, but contained low numbers of pro-inflammatory 6-sulfo-LacNAc+ (Slan)-DCs. Finally, children transplanted with G-CSF + MZ-mobilized grafts received greater numbers of monocytes, myeloid and plasmacytoid DCs, but lower numbers of NK cells, NK-like T cells and Slan-DCs. Conclusions: MZ facilitates the collection of mega-doses of CD34+ HSCs for haploidentical HSCT, while affecting graft composition

    Covid-19 And Rheumatic Autoimmune Systemic Diseases: Role of Pre-Existing Lung Involvement and Ongoing Treatments

    Get PDF
    The Covid-19 pandemic may have a deleterious impact on patients with autoimmune systemic diseases (ASD) due to their deep immune-system alterations

    Fatality rate and predictors of mortality in an Italian cohort of hospitalized COVID-19 patients

    Get PDF
    Clinical features and natural history of coronavirus disease 2019 (COVID-19) differ widely among different countries and during different phases of the pandemia. Here, we aimed to evaluate the case fatality rate (CFR) and to identify predictors of mortality in a cohort of COVID-19 patients admitted to three hospitals of Northern Italy between March 1 and April 28, 2020. All these patients had a confirmed diagnosis of SARS-CoV-2 infection by molecular methods. During the study period 504/1697 patients died; thus, overall CFR was 29.7%. We looked for predictors of mortality in a subgroup of 486 patients (239 males, 59%; median age 71 years) for whom sufficient clinical data were available at data cut-off. Among the demographic and clinical variables considered, age, a diagnosis of cancer, obesity and current smoking independently predicted mortality. When laboratory data were added to the model in a further subgroup of patients, age, the diagnosis of cancer, and the baseline PaO2/FiO2 ratio were identified as independent predictors of mortality. In conclusion, the CFR of hospitalized patients in Northern Italy during the ascending phase of the COVID-19 pandemic approached 30%. The identification of mortality predictors might contribute to better stratification of individual patient risk

    PCA study of the interannual variability of the GPS height and environmental parameters

    Get PDF
    The objective of this study is to investigate a large network of GPS stations to identify and analyze spatially coherent signals present in the Up coordinate time series of the stations and, at the same locations, to identify and analyze common patterns in the series of environmental parameters and climate indices. The study is confined to Europe and the Mediterranean area, where 107 GPS sites were selected from the archive of the Nevada Geodetic Laboratory (NGL) on the basis of the completeness and length of the data series. The parameters of interest the Up coordinate of the GPS stations, the surface pressure (SP), the terrestrial water storage (TWS) and various climate indices: NAO (North Atlantic Oscillation), EA (East Atlantic), AO (Artic Oscillation), SCAND (Scandinavia), TNA (Tropical North Atlantic) and MEI v2 (Multivariate ENSO Index version 2). The Principal Component Analysis (PCA) is the methodology adopted to extract the main patterns of the space/time variability of these parameters. The work also focused on the coupled modes of space/time interannual variability between pairs of variables using the Singular Value Decomposition (SVD) methodology. The coupled variability between all the aforementioned parameters is investigated. This study has identified, over Europe and the Mediterranean, main modes of variability in the time series of the GPS Up coordinate, SP and TWS. The SVD analysis of coupled parameters, namely GPS Up-SP and GPS Up-TWS, showed that most of the common variability is explained by the first 3 modes. Moreover, the correlation between the GPS Up coordinate and the climate indices was estimated to investigate the possible influence of climate variability on the GPS Up behaviour. More than 30 stations, over the total of 107, show significant correlations with the AO, TNA and SCAND indices. The correlation coefficients with MEI v2 turn out to be significant and up to 0.5 for about half of the stations

    Interannual Variability of GPS Heights and Environmental Parameters over Europe and the Mediterranean Area

    No full text
    Vertical deformations of the Earth’s surface result from a host of geophysical and geological processes. Identification and assessment of the induced signals is key to addressing outstanding scientific questions, such as those related to the role played by the changing climate on height variations. This study, focused on the European and Mediterranean area, analyzed the GPS height time series of 114 well-distributed stations with the aim of identifying spatially coherent signals likely related to variations of environmental parameters, such as atmospheric surface pressure (SP) and terrestrial water storage (TWS). Linear trends and seasonality were removed from all the time series before applying the principal component analysis (PCA) to identify the main patterns of the space/time interannual variability. Coherent height variations on timescales of about 5 and 10 years were identified by the first and second mode, respectively. They were explained by invoking loading of the crust. Single-value decomposition (SVD) was used to study the coupled interannual space/time variability between the variable pairs GPS height–SP and GPS height–TWS. A decadal timescale was identified that related height and TWS variations. Features common to the height series and to those of a few climate indices—namely, the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), the East Atlantic (EA), and the multivariate El Niño Southern Oscillation (ENSO) index (MEI)—were also investigated. We found significant correlations only with the MEI. The first height PCA mode of variability, showing a nearly 5-year fluctuation, was anticorrelated (−0.23) with MEI. The second mode, characterized by a decadal fluctuation, was well correlated (+0.58) with MEI; the spatial distribution of the correlation revealed, for Europe and the Mediterranean area, height decrease till 2015, followed by increase, while Scandinavian and Baltic countries showed the opposite behavior

    Spatial modeling of cryospheric hazards: predicting retrogressive thaw slumps in Alaska

    No full text
    Classifying a given landscape on the basis of its susceptibility to surface processes is a standard procedure in low to mid latitudes. Conversely, these procedures have hardly been explored in peri-glacial regions, mostly because of the limited presence of human settlements and thus of the need for risk assessment. However, global warming is radically changing this situation and will change it even more in the years to come. For this reason, understanding the spatial and spatio-temporal dynamics of gemorphological processes in peri-arctic environments can be crucial to make informed decision in such unstable environments but also to shed light on what changes may follow at lower latitudes. For this reason, here we explored the use of artificially intelligent models capable of recognizing locations prone to develop retrogressive thaw slumps (RTS). These are cryospheric hazards induced by permafrost degradation and their development can negatively affect human settlements or infrastructure, change the sediment budget dynamics and release greenhouse gases. Specifically, we test a binomial Generalized Additive Modeling structure to estimate probability of RTS occurrences/development in the North sector of the Alaskan territory. The results we obtain show that our binary classifier is able to accurately recognize locations prone to RTS, in a number of goodness-of-fit and cross-validation routines. Overall, our analytical protocol has been implemented with the idea in mind of building an open source tool scripted in Python

    Optimal linear receiving filter for digital transmission over nonlinear channels

    No full text
    The optimum linear receiving filter for digital transmission over a nonlinear channel is specified. Under the assumption that the channel has a finite memory and that the noise is additive Gaussian, an optimum receiver is sought in the form of a linear receiving filter followed by a symbol-rate sampler and a memoryless decision device. The receiving filter is chosen so as to minimize the mean-square error between the input to the decision device and the transmitted symbol. It is shown that the structure of the optimum receiving filter corresponds to a bank of matched filters, each followed by a linear transversal filter. The number of matched filters is equal to the number of linearly independent waveforms that can be observed at the channel output in a symbol period. This result is a generalization of a fact which is well known for linearly modulated signals transmitted over linear channel
    corecore