47 research outputs found

    The Effect of the Dicto-gloss as a Cooperative Learning Technique on EFL Learners' Self-efficacy in Writing

    Get PDF
    This study investigates the effect of Dicto-gloss as a cooperative learning technique on the perceived self-efficacy of Iranian EFL learners in writing. There were 46 Persian speaking EFL learners participated in this study. Out of 46, 23 participants were taken as the experimental group and the other 23 as the control group. They were heterogeneous due to the cooperative nature of the study. As the first phase of data collection, a self-efficacy in writing questionnaire developed by Yavuz-Erkan (2004) was administered to both groups as a pretest in order to evaluate the degree of their self-efficacy in writing. The experimental group was exposed to the Dicto-gloss technique of cooperative learning, while the control group was exposed to the traditional method of writing instruction in TEFL writing classes. After 13 sessions of treatment, the self-efficacy in writing questionnaire was reapplied to both groups as the post test. The participants' scores in the two groups were calculated and compared. The results revealed a difference between the two groups, indicating the effects of THE dicto-gloss technique of cooperative learning on self-efficacy in the writing of EFL learners.

    Current Research of the Renin-Angiotensin System Effect on Stem Cell Therapy

    Get PDF
    The renin-angiotensin system (RAS) is a chief regulator of the cardiovascular system and body fluid homeostasis. Stem/progenitor cell therapy has pointed towards a novel tool for medical and therapeutic intervention. In addition to the physiological and pathological role of the RAS and its pharmacological inhibitors, the proliferation, differentiation in stem cells is mediated through various cell-signalling pathways. This book chapter reviews the new role of RAS components, distinct from other common roles by considering its regulating impact on the several signalling pathways involved in different body tissues, as well as in stem cell therapy

    Evaluating of novel thiazolidinone compounds with hypnotic effects

    Get PDF
    Introduction: Insomnia is a common problem among the people all over the world. This problem affects both sleep’s quantity and quality. Among sedative-hypnotic drugs, barbiturates are more toxic than benzodiazepines. Besides, current benzodiazepines have many side effects like dependence, muscle relaxation, and withdrawal syndrome. Attention to synthesize novel benzodiazepine like derivatives, which have fewer side effects, has been improved. Thiazolidinone derivatives are novel benzodiazepine-like compounds that have all pharmacophores like lipophilic group and aromatic ring for binding to the benzodiazepine receptor (GABA). Methods and Results: In this research hypnotic effect of two novel thiazolidinone derivatives were evaluated, using pentobarbital-induced loss of righting reflex test. Open field test, was used to evaluate the locomotor activity of the mice in all groups. Male mice in the range of 18-25 g of weight were used in all tests. Moreover, diazepam and flumazenil were used as an agonist and antagonist of GABA-A receptor respectively to indicate that the novel compounds show their effects through interacting with benzodiazepine receptors. Compound SM4 at the dose of 20, 30, and 40 mg/kg (i.p.) and compound SM6 at the dose of 30 and 40 mg/kg (i.p.) increased the sleeping time dose-dependently and showed significant hypnotic effects compared to the control group in the righting reflex test. Also, the sleeping time was decreased by the injection of flumazenil as an antagonist of GABA-A receptor after the injection of each compound. In the open field test, both compounds at the dose of 20, 30, and 40 mg/kg (i.p.) decreased the total distance moved which indicates sedative effect of the novel compounds. Conclusions:The results indicate that both compounds (SM4 and SM6) have sedative-hypnotic effects, which may be due to an interaction between novel benzodiazepine-like compounds and GABA-A receptor. We recommend further studies to determine the exact mechanism of action and toxicity of the novel compounds

    Vitamin D Receptor and Vitamin D Binding Protein Gene Polymorphisms Are Associated with Renal Allograft Outcome

    Get PDF
    Vitamin D deficiency has adverse effects on renal allograft outcomes, and polymorphisms of genes encoding vitamin D-binding protein (VDBP) and vitamin D receptor (VDR) are defined to play a role in these conditions. The goal of the current investigation was to evaluate the connection between those polymorphisms with acute rejection, viral infection history, and recipients’ vitamin D status. In this study, 115 kidney transplant recipients and 100 healthy individuals were included. VDR polymorphisms including FokI (rs2228570), Apal (rs7975232), BsmI (rs1544410), as well as VDBP (rs7040) polymorphisms were studied using high resolution melting (PCR-HRM) analysis among the studied groups. The frequency of G allele in Apal rs7975232 polymorphism in the kidney transplant recipients was 0.63 times lower than healthy individuals (p = 0.026). Further, the G allele frequency in VDBP rs7040 polymorphism was significantly lower in patients with allograft rejection (p = 0.002). Considering the incidence of viral infection, significant differences were identified between the frequencies of VDR FokI (OR = 2.035; 95% CI 1.06–2.89, p = 0.030) and VDBP rs7040 (OR = 0.40; 95% CI 0.24–0.67, p < 0.001) T alleles in the studied groups. Moreover, the VDBP rs7040 GG genotype distribution was low in the recipients with a history of viral infection (p = 0.004). VDR (FokI) and VDBP (rs7040) alleles and their genotype distribution are significantly associated with allograft outcomes including allograft rejection and viral infection in the studied population

    Cytoprotective Properties of Carnosine against Isoniazid-Induced Toxicity in Primary Cultured Rat Hepatocytes

    Get PDF
    Background: Drug-induced liver injury is a critical clinical complication. Hence, finding new and safe protective agents with potential clinical application is of value. Isoniazid (INH) is an antituberculosis agent widely used against Mycobacterium tuberculosis infection in human. On the other hand, hepatotoxicity is a clinical complication associated with isoniazid therapy. Oxidative stress and its associated events are major mechanisms identified for INH-induced liver injury. Carnosine is an endogenously found peptide widely investigated for its hepatoprotective effects. On the other hand, robust antioxidant and cytoprotective effects have been attributed to this peptide. Methods: The current study designed to evaluate the potential cytoprotective properties of carnosine against INH-induced cytotoxicity in drug-exposed primary cultured rat hepatocytes. Primary cultured rat hepatocytes were incubated with INH (1.2 mM). Results: INH treatment caused significant increase in cell death and lactate dehydrogenase (LDH) release. On the other hand, it was found that markers of oxidative stress including reactive oxygen species were significantly increased in INH-treated cells. Cellular glutathione reservoirs were also depleted in INH-treated group. Carnosine treatment (50 and 100 µM) significantly diminished INH-induced oxidative stress and cytotoxicity. Conclusion: These data mention carnosine as a potential protective agent with therapeutic capability against INH hepatotoxicity

    Move to the Fourth-Generation Universities: A Systematic Scoping Review of Educational and Management Strategies

    Get PDF
    Background: Higher education is not uniform. There are significant differences between higher education systems among different countries and even among institutions in a similar education or system; therefore, identifying the various types of entrepreneurial activities helps the mission of fourth-generation universities. Objectives: The purpose of this study was to introduce the most important educational strategies to move towards fourth-generation universities. Methods: We systematically searched the international databases, including PubMed, Web of Science, Scopus, ISC, SID, and Google Scholar, until 2021 using some relevant keywords. Then, screening and selecting eligible articles according to inclusion criteria were done by two researchers independently. Results: Soft skills training, sustainable development training, training business law, reviewing the continuous training of professors, promoting ideation and creativity to solve problems, development of interdisciplinary training, decentralization of government accelerators and deployment of private accelerators, privatization of higher education, and internationalization are the most important educational strategies to move towards fourth-generation universities. One of the critical aspects and perspectives of the fourth-generation university is the development of job skills, professions, and competencies and empowerment of students and professors in line with the process of national development and solving society's problems scientifically. Conclusion: This research's analytical results help the universities design and implement their strategies to reach the fourth-generation universities according to the standard implementation models of the fourth-generation universities. Keywords: Universities, Education, Policy, Fourth-Generatio

    Dysregulated levels of glycogen synthase kinase-3β (GSK-3β) and miR-135 in peripheral blood samples of cases with nephrotic syndrome

    Get PDF
    Background. Glycogen synthase kinase-3 (GSK-3β) is a serine/threonine kinase with multifunctions in various physiological procedures. Aberrant level of GSK-3β in kidney cells has a harmful role in podocyte injury. Methods. In this article, the expression levels of GSK-3β and one of its upstream regulators, miR-135a-5p, were measured in peripheral blood mononuclear cells (PBMCs) of cases with the most common types of nephrotic syndrome (NS); focal segmental glomerulosclerosis (FSGS) and membranous glomerulonephritis (MGN). In so doing, fifty-two cases along with twenty-four healthy controls were included based on the strict criteria. Results. Levels of GSK-3β mRNA and miR-135 were measured with quantitative realtime PCR. There were statistically significant increases in GSK-3β expression level in NS (P = 0.001), MGN (P = 0.002), and FSGS (P = 0.015) groups compared to the control group. Dysregulated levels of miR-135a-5p in PBMCs was not significant between the studied groups. Moreover, a significant decrease was observed in the expression level of miR-135a-5p in the plasma of patients with NS (P = 0.020), MGN (P = 0.040), and FSGS (P = 0.046) compared to the control group. ROC curve analysis approved a diagnostic power of GSK-3β in discriminating patients from healthy controls (AUC: 0.72, P = 0.002) with high sensitivity and specificity. Conclusions. Dysregulated levels of GSK-3β and its regulator miR-135a may participate in the pathogenesis of NS with different etiology. Therefore, more research is needed for understanding the relationship between them

    The Use of Nanomaterials in Tissue Engineering for Cartilage Regeneration; Current Approaches and Future Perspectives

    Get PDF
    The repair and regeneration of articular cartilage represent important challenges for orthopedic investigators and surgeons worldwide due to its avascular, aneural structure, cellular arrangement, and dense extracellular structure. Although abundant efforts have been paid to provide tissue-engineered grafts, the use of therapeutically cell-based options for repairing cartilage remains unsolved in the clinic. Merging a clinical perspective with recent progress in nanotechnology can be helpful for developing efficient cartilage replacements. Nanomaterials, < 100 nm structural elements, can control different properties of materials by collecting them at nanometric sizes. The integration of nanomaterials holds promise in developing scaffolds that better simulate the extracellular matrix (ECM) environment of cartilage to enhance the interaction of scaffold with the cells and improve the functionality of the engineered-tissue construct. This technology not only can be used for the healing of focal defects but can also be used for extensive osteoarthritic degenerative alterations in the joint. In this review paper, we will emphasize the recent investigations of articular cartilage repair/regeneration via biomaterials. Also, the application of novel technologies and materials is discussed
    corecore