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ABSTRACT
Background. Glycogen synthase kinase-3 (GSK-3β) is a serine/threonine kinase with
multifunctions in various physiological procedures. Aberrant level of GSK-3β in kidney
cells has a harmful role in podocyte injury.
Methods. In this article, the expression levels of GSK-3β and one of its upstream
regulators, miR-135a-5p, were measured in peripheral blood mononuclear cells
(PBMCs) of cases with the most common types of nephrotic syndrome (NS); focal
segmental glomerulosclerosis (FSGS) andmembranous glomerulonephritis (MGN). In
so doing, fifty-two cases along with twenty-four healthy controls were included based
on the strict criteria.
Results. Levels of GSK-3βmRNA and miR-135 were measured with quantitative real-
time PCR. There were statistically significant increases in GSK-3β expression level in NS
(P = 0.001), MGN (P = 0.002), and FSGS (P = 0.015) groups compared to the control
group. Dysregulated levels of miR-135a-5p in PBMCs was not significant between the
studied groups. Moreover, a significant decrease was observed in the expression level
of miR-135a-5p in the plasma of patients with NS (P = 0.020), MGN (P = 0.040),
and FSGS (P = 0.046) compared to the control group. ROC curve analysis approved
a diagnostic power of GSK-3β in discriminating patients from healthy controls (AUC:
0.72, P = 0.002) with high sensitivity and specificity.
Conclusions. Dysregulated levels ofGSK-3β and its regulatormiR-135amay participate
in the pathogenesis of NS with different etiology. Therefore, more research is needed
for understanding the relationship between them.

Subjects Cell Biology, Molecular Biology, Hematology, Nephrology, Medical Genetics
Keywords Nephrotic syndrome, Proteinuria, Focal Segmental Glomerulosclerosis, Membranous
glomerulonephritis, miR-135a-5p, GSK-3β

How to cite this article Ardalan M, Hejazian SM, Sharabiyani HF, Farnood F, Ghafari Aghdam A, Bastami M, Ahmadian E, Zununi Va-
hed S, Cucchiarini M. 2020. Dysregulated levels of glycogen synthase kinase-3β (GSK-3β) and miR-135 in peripheral blood samples of cases
with nephrotic syndrome. PeerJ 8:e10377 http://doi.org/10.7717/peerj.10377

https://peerj.com
mailto:sepide.zununi@gmail.com
mailto:mmcucchiarini@hotmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.10377
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.10377


INTRODUCTION
Glycogen synthase kinase-3 (GSK-3) is a conserved multi-functional serine/threonine
kinase that is expressed in all tissues. Its mechanism of phosphorylation regulates various
physiological processes, including gene expression, cell signaling (Maurer et al., 2014),
metabolism (glucose regulation) (Nikoulina et al., 2000), cellular transport, proliferation,
apoptosis, and intracellular communication (Kuemmerle, 2005). It also regulates cellular
motility (Sun, Rodriguez & Kim, 2009) and organization of cytoskeleton (Wu et al., 2011).
Interest in GSK-3 has been significantly amplified with the understanding that it is
also involved in embryogenesis, inflammation, and immunomodulation (Ali, Hoeflich &
Woodgett, 2001; Beurel, Grieco & Jope, 2015; Xu et al., 2014). Abnormal GSK-3 has serious
role in the pathophysiology of inflammatory diseases, cancer, diabetes, Alzheimer’s and
bipolar disorder (Khan et al., 2017; Maurer et al., 2014). Two isoforms of GSK3 exist (α
and β), differentially expressed in various tissues.

In the kidney, GSK-3β is mainly expressed in podocytes and tubular cells, and to a lesser
extent, in the glomerular endothelial andmesangial cells (Li et al., 2016a; Zhou et al., 2016).
Podocytes are specialized cells found on the outside of the glomerular basement membrane
(GBM) and damage in these cells plays an essential function in initiation and progression
of nephrotic syndrome (NS) (Hu et al., 2018). Increased glomerular permeability to large
molecules is the underlying pathological process in NS of any etiology (3, 4). The most
common causes of NS are membranous glomerulonephritis (MGN) and focal segmental
glomerulosclerosis (FSGS). The involved mechanism in these diseases is podocyte injury
that ends to end-stage renal disease (ESRD) (Rosenberg & Kopp, 2017). MGN is likely
to be a heterogeneous disease, however, an important known cause is deposition of
antibody against antigenic targets on podocytes in glomerulus (Ronco & Debiec, 2006) and
pathological change in GBM (Wasserstein, 1997).

The aberrantly up-regulated expression of GSK-3β in tubular cells and glomeruli of
kidney (Gong et al., 2008a) suggests a harmful role of GSK-3 in podocyte injury (Boini
et al., 2009) and its over-activation is associated with a different kidney diseases ranging
from proteinuric glomerulopathies to advanced chronic kidney disease (CKD) (Paeng et al.,
2014). GSK-3β over-activity eases podocyte autonomous damage by several podocytopathic
signaling pathways. By dictating the phosphorylation and activation of paxillin, GSK-3β
increases the actin cytoskeleton disorganization and hypermotility of podocyte. Moreover,
by activation of NF-κB, it directs inflammation in podocytes. These two mechanisms
of GSK-3β action are involved in podocyte foot process effacement. Additionally, by
activation of pore (Cyp-F), an element of mitochondria permeability transition (MPT),
GSK-3β sensitizes podocyte death and results in podocytopenia (Gong et al., 2008b; Li et
al., 2016a; Xu et al., 2014). Furthermore, under diabetic conditions, enhanced activity of
GSK-3β facilitates podocyte apoptosis (Paeng et al., 2014). It is also reported that GSK-3β
in exfoliated urine cells may function as a novel biomarker for predicting the progression
of diabetic kidney disease (Liang et al., 2020). In constancy, pharmacological or genetic
blockade of GSK-3β can defend against podocyte damage and reduce proteinuria in several
nondiabetic glomerulopathies models (Zhou et al., 2016).
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GSK-3β is a potential target gene of the miR-135 family. The miR-135 family is involved
in different cellular pathways and consists of two members: miR-135a and miR-135b.
These molecules are also presented in the podocytes and their aberrant expression are
associated with some renal diseases. miR-135a is a major factor in podocyte damage
and its upregulated expression is observed in glomeruli of patients with NS with FSGS
histopathology (Yang et al., 2015). By GSK-3β inhibition, miR-135 family could stimulate
the Wnt/β-catenin signaling in podocytes (Yang et al., 2015).

Therefore, a detailed understanding of the GSK-3β function and its expression in several
pathological conditions will help the clinic manage different kidney diseases. Given the
role of GSK-3β in the podocytes injury and its involvement in response to steroid therapy,
and based on the fact that up until now no studies have performed on the expression of
this enzyme in clinical samples to the best of our knowledge, we evaluate its expression
in blood samples of patients with NS with different histopathology: FSGS and idiopathic
MGN.

MATERIALS & METHODS
Study subjects
This cross-sectional study recruited fifty-two primary NS patients. Nephrotic proteinuria
was defined by proteinuria (urinary protein excretion≥ 3 g /24 h). The age range 20-60 years
old and patients with primary NS were inclusion criteria. Any overlap syndrome, a history
of cancer, inflammatory diseases, autoimmune disorder (diabetes), severe infection,
organ failure and those with ESRD under dialysis were the exclusion criteria for cases.
Cases with secondary NS causes (e.g., amyloidosis, viral infection, diabetes, drug-related
NS and systemic lupus erythematosus) were also excluded. Healthy volunteers was also
allocated as controls with no clinical history of kidney disease (n= 24). This study was
approved by Tabriz University ofMedical Sciences granted Ethical (Ethical Application Ref:
IR.TBZMED.REC.1397.1021). We received written informed consent from participants
and they agreed to participate in the study.

RNA extraction and evaluation in PBMCs
Total RNAs were extracted from the plasma and PBMCs as described previously (Hejazian
et al., 2020a; Hejazian et al., 2020b).

Conversion of isolated microRNA and mRNA from PBMCs samples into cDNA was
performed separately in 15 µL reaction volume; 1 µg RNA extracted from PBMCs, 0.8
µL RT enzyme, 3 µl RT buffer, 0.375 µL Ribolock, 1.5 µL dNTP, 3 µL primer and 1.325
µL DEPC. An equal volumes of customized stem loop primers of miR-135, Snord-47
and universal reverse along with GSK-3β and GAPDH were used. The sequences of
GSK-3β forward and reverse primers were: 5′-CTGGTGCTGGACTATGTTCC-3′and
reverse 5′-CGATGGCAGATTCCAAAGGA-3′. Sequence of miR-135 primers were
5′-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTCACAT-
3′ (stem-loop reverse transcription), 5′-GGCGTATGGCTTTTTATTCCTATGTGA-
3′ (forward), and 5′-GTGCAGGGTCCGAGGT-3′ (reverse). Sequences of other primers
and the program of real-time PCR for amplification of mRNA and microRNA were
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Table 1 Demographic and baseline clinical data.

Characteristics FSGS group
(N = 22)

MGN
(N = 30)

P-value

Age, mean± SD (years) 42.5± 10.8 45.6± 11.7 0.342
Proteinuria (mg/24 h) 1351 (101–15000) 3000 (90–14800) 0.21a

Serum creatinine (mg/dL) 1.2± 0.5 2.11± 0.40 0.23
Urea (mg/dL) 40.2± 18 37.2± 15.01 0.10
Uric acid (mg/dL) 5.32± 1.1 6.21± 1.3 0.55

Notes.
The quantity data are expressed as mean± SD.

aMedian (Min-Max) is presented, P-value is based on Mann–Whitney U test.

described previously (Hejazian et al., 2020a; Hejazian et al., 2020b). Snord-47 and GAPDH
were applied as internal controls for normalization of microRNA and mRNA levels in
PBMCs, respectively. Moreover, U6 was used as a control for normalizing the circulating
miR-135 in plasma. Fold change was calculated via 2−11Ct formulas for determination of
each mir-135 and GSK-3β relative expression in clinical samples.

Statistical analysis
Statistical analyses were performed by the IBM SPSS 22.0 Software (SPSS, Inc.). Shapiro-
Wilk test was used to test the normal distribution of the variables. Categorical variables
were presented by numbers and percentages. For non-normally and normally distributed
variables, median (Interquartile range) and Mean ± standard deviation (SD) were used,
respectively. For comparisons of quantitative variables between two groups, Student’s t -test
/Mann-Whitney U test was used, while for categorical variables, chi-squared test was used.
For comparison of variables between more than two groups Kruskal–Wallis or ANOVA
test was used. Spearman’s correlation was used for evaluation of correlations between
variables. The ROC curve analysis was used for evaluating the potential of miR-135 and
GSK-3β in discriminating cases from controls. P value <0.05 was considered statistically
significant.

RESULTS
In the present study, 52 patients were included, with mean age of 45.76 ± 13 years old.
Despite histopathological differences, all patients had primary and drug-refractory NS.
Based on the biopsy results and clinical data, the patients were divided into FSGS (N = 22)
andMGN (N = 30) groups. The mean ages of FSGS andMGN groups were 42± 10 and 45
± 11, respectively. A healthy age/ sex-matched control group (N = 24) was also included
with a mean age of 38.4 ± 9.7 years old, considered as controls. No significant differences
were observed in GFR (P = 0.324), serum creatinine (mg/dL), serum urea (mg/dL), uric
acid (mg/dL), and 24-hour urine protein excretion between the MGN and FSGS groups
(P > 0.05), Table 1.

There were statistically significant increases in GSK-3β expression level in NS
(P = 0.001), MGN (P = 0.002), and FSGS (P = 0.015) groups when compared to controls,
Figs. 1A–1C. GSK-3β level was also higher in FSGS group in comparison to MGN group
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Figure 1 Relative gene expression of GSK-β3 in blood cell samples. Comparison of gene expression be-
tween (A) control and NS (B) FSGS and controls, (C) MGN and control and (D) MGN and FSGS groups.
NS: nephrotic syndrome, FSGS: focal segmental glomerulosclerosis and MGN: membranous glomeru-
lonephritis.

Full-size DOI: 10.7717/peerj.10377/fig-1

(P = 0.803), Fig. 1D. In the peripheral blood cells, there was no statistically significant
differences in expression levels of miR-135a-5p in NS (P = 0.660), MGN (P = 0.860)
and FSGS (P = 0.190) groups in comparison to healthy group (Fig. 2A and 2B). A
non-significant difference was found between the FSGS and MGN groups (P = 0.082)
(Fig. 2B). The expression level of miR-135a-5p was also evaluated in plasma samples of
the individuals. There was a significant decrease in miR-135a-5p expression level in NS
group (P = 0.020) and MGN (P = 0.040) compared to control group in plasma samples
(Fig. 2C and 2D). Moreover, a statistically significant decline was observed in circulating
miR-135a-5p level (P = 0.046) in the FSGS group compared to the controls. There was no
significant changes in miR-135a-5p expression level between FSGS and MGN groups in
plasma samples (P = 0.501) (Fig. 2D). The median of expression levels are presented in
Table 2.

It is reported that expression of GSK-3β is related to a response to glucocorticoids (GC).
Since most of patients in FSGS group were unresponsive to GCs, they were named GC-
resistant-FSGS and GC-responsive-FSGS. GC-resistant defined by sustained proteinuria
after 8-12 weeks of GCs therapy. A significant elevated level of GSK-3β was observed
in GC-resistant-FSGS (P < 0.001) compared to control group. A difference between
FSGS groups was not statistically significant (P > 0.05), (Fig. 3A). There were statistically
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Figure 2 microRNA-135a-5p relative gene expression in clinical samples. Comparison of miR-135 ex-
pression between the studied groups (A–B) in PBMCs and (C–D) plasma samples. NS, nephrotic syn-
drome, FSGS, focal segmental glomerulosclerosis, MGN, membranous glomerulonephritis and PBMC,
peripheral blood mononuclear cells.

Full-size DOI: 10.7717/peerj.10377/fig-2

Table 2 The values of11Ct and relative expression in the studied groups.

Gene expression Controls NS MGN FSGS P-valueb

11Ct values
Plasma miR-135 −0.45 (4.73) 0.92(3.82)

aP = 0.022
1.36 (4.0)
aP = 0.047

0.47(3.34)
aP = 0.045

0.849

PBMC miR-135 −0.31(3.10) 0.17(1.57)
aP = 0.629

0.14(1.66)
aP = 0.935

0.17 (1.47)
aP = 0.279

0.097

PBMC GSK-3β −0.15(1.57) −0.86(1.69)
aP = 0.001

−0.91(1.69)
aP = 0.001

−0.75(1.86)
aP = 0.015

0.771

Relative expression
Plasma miR-135 1.368(3.7) 0.53(1.80) 0.39(1.9) 0.72(1.39) 0.826
PBMC miR-135 1.24(2.8) 0.89(1) 0.91(1.02) 0.88(1.04) 0.082
PBMC GSK-3β 1.11(1.17) 1.82(1.95) 1.88 (1.95) 1.67(2.47) 0.503

Notes.
Median (Interquartile range, IQR) is presented. P-value is based on Mann–Whitney U test.

aThe studied groups versus controls.
bMGN versus FSGS group.

significant correlations between miR-135 and GSK-3 β in MGN and FSGS groups in
PBMCs samples (Table 3).
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Figure 3 Clinical value of GSK-β3. (A) Expression levels of GSK-β3 in GCs-resistant-FSGS compared to
GCs-responsive-FSGS and healthy controls in PBMCs samples. (B, C) ROC curves analysis of GSK-β3 in
PBMCs samples. (B) GSK-β3 could discriminate NS patients from controls. (C) GSK-β3 could discrim-
inate FSGS from MGN patients. AUC, Area under the curve, FSGS, Focal segmental glomerulosclerosis,
MGN, membranous glomerulonephritis, PBMC, peripheral blood mononuclear cells, ROC, Receiver op-
erating characteristic.

Full-size DOI: 10.7717/peerj.10377/fig-3

Table 3 Correlations between the studied genes inMGN and FSGS groups.

MGN PlasmamiR-135 PBMCmiR-135

PBMC miR-135 r =−0.211
P > 0.05

1

GSK-3β r = 0.198
P > 0.05

r =−0.469
P = 0.001

FSGS
PBMC miR-135 r = 0.136

P > 0.05
1

GSK-3β r = 0.055
P > 0.05

r =−0.465
P = 0.013

Notes.
r, Spearman’s rho correlation coefficient; FSGS, focal segmental glomerulosclerosis; MGN, membranous glomerulonephritis;
PBMC, peripheral blood mononuclear cells.
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Analysis of the ROC diagram showed that GSK-3β with AUC = 0.72 (P = 0.002) with
reliable sensitivity and specificity in PBMCs had high diagnostic power in separating NS
patients from healthy controls (Figs. 3B, 3C). However, miR-135a did not have reliable
value in discriminating NS patients from controls, AUC = 0.605 in plasma samples and
AUC = 0.510 in PBMCs (Fig. S1).

DISCUSSION
In this study, elevated levels of GSK-3β were observed in peripheral blood cells of patients
with NS with two different histopathology; FSGS and MGN. However, dysregulated levels
of miR-135a-5p in PBMCs was not significant between the studied groups. Results showed
a significant decrease in miR-135a-5p expression in patients with NS and MGN compared
to controls in plasma samples.

Elevated expression of GSK-3β in tubules of kidney (Gong et al., 2008a) indicates a
destructive role of GSK-3 (Boini et al., 2009). In the kidney, GSK-3β has been associated
with (AKI) and repair (Wang et al., 2013) and in progressive chronic kidney disease,
GSK-3β is a modulator of renal tubular and interstitial injury. Indeed, GSK-3β inhibitors
could reduce cell motility in several cells (Peng et al., 2012) and improve nonsteroidal
anti-inflammatory drugs-induced AKI by stimulation of the renal cortical COX-2 and
MPT inhibition (Bao et al., 2012). Prevention of GSK-3β can also inhibit oxidative stress
in kidney transplant rats after renal cold ischemia/reperfusion injury (IRI) (24) and
attenuate renal IRI by activation of Nrf2/HO-1 pathway in diabetic rats (Shen et al., 2017).
Likewise, a GSK-3β inhibitor could protect rat kidney transplants against IRI by inducing
the expression of the TLR4/MyD88/NF-κB pathway. In our study, dysregulated levels of
GSK-3β were observed in FSGS andMGN groups, indicating that GSK-3βmay be involved
in the pathophysiology of NS.

Standard and first line treatment in FSGS is a prolonged course of glucocorticoids (Han
& Kim, 2016). However, about 60 percent of adult cases are resistant to this treatment
(Beaudreuil et al., 2017). GCs-resistant cases are more likely to progress to ESRD (Hogg,
Middleton & Vehaskari, 2007). It is reported that GSK-3 also regulates GCs signaling by
phosphorylation of the GC receptor (Ser404). The GSK-3 signaling pathway utilizes a form
of cellular resistance to GC therapy and GSK-3 activity determines how cells will eventually
reply to glucocorticoids (Galliher-Beckley et al., 2008). In both bronchial epithelial cells and
monocytes of patients with chronic obstructive pulmonary disease (COPD), inactivation of
GSK-3β led to a reduced responsiveness of inflammatory mediators to GCs (Ngkelo et al.,
2015). In the present study, an elevated levels of GSK-3β were observed in FSGS patients
most of which were GC-resistant. Our result shows that GSK-3β may be also involved in
responses to the treatment in FSGS patients.

Previous studies show that miR-135a ameliorates cell proliferation in kidney cancer
and induces renal fibrosis in diabetic nephropathy (He et al., 2014; Yamada et al., 2013).
Knockdown of miR-135a-5p could reduce kidney fibrosis via Smad3/TGF β1 pathway
inactivation and targeting SIRT1 in diabetic nephropathy (Zhang et al., 2020). GSK-3 is
a target of miR-135. Yong et al. showed overexpression of miR-135a in the podocyte of
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patients with FSGS and GSK-3β inhibition (Yang et al., 2015). Likewise, in an in vitro
model of Parkinson’s disease, overexpression of miR-135 exerts neuroprotective role
by reducing apoptosis, stimulating proliferation, and inhibiting inflammation through
targeting GSK-3β (Zhang et al., 2017). It is also reported that miR-135b is involved in the
radioresistance of human glioblastomamultiforme by targeting GSK3β directly (Xiao et al.,
2014). Beyond miR-135, GSK-3β can be also regulated by some other miRNAs including,
miR-769, miR-26a, and miR-709 (Jiang et al., 2015; Li et al., 2016b; Qiu et al., 2016).

Fong he et al. show that miR-135a upregulation in serum and renal tissue of patients
suffering from diabetic nephropathy could induce renal fibrosis and enhance extracellular
matrix protein synthesis by suppression of TRCP1 (Transient receptor potential canonical
1) and decreasing Ca2+ entry into the mesangial cells providing new insights into the roles
of microRNA in the diabetic nephropathy (He et al., 2014) and podocyte injury (Yang et
al., 2017).

In recent years, studies have been implied the relationship between microRNA-135
family and related genes in podocyte stability (He et al., 2014; Yang et al., 2015; Yang et al.,
2017). Increased level of miR-135a were reported in the biopsy of patients with FSGS as
well as mice with podocyte injury (Yang et al., 2017). It has been suggested that abnormal
expression of microRNA-135 family members is involved in podocyte actin fiber and
cytoskeleton stability by an unknown mechanism (Yang et al., 2017). TRPC1 and GSK-3β
are the target genes of this microRNA and are affected during the disease. Previous studies
reviewed in FSGS patients suggest that expression levels of microRNA-135a were increased
in patients with NS. In our study, an increase miR-135-5p expression level in PBMCs and
a decrease level were observed in plasma samples among patients with NS and its subtypes
compared to healthy controls implying the role of miR-135 in the pathogenesis of NS.

ROC curve analysis also showed that GSK-3β has sufficient diagnostic power to
distinguish nephrotic syndrome patients from controls in our study. In its place, the
goals for the near future should be to understand the pathogenic role of GSK-3β in
specific kidney disease processes. Analysis of renal disease-related RNA profile needs exact
identification of specific types of RNAs with diagnostic and prognostic values.

The present study had some limitations including small sample size. Studying the
expression of genes in biopsy samples could give more reliable results; however, since it’s
an invasive method we preferred to choose available and non-invasive sources. It would be
better to study these genes in different clinical samples and compare the results.

CONCLUSIONS
It can be concluded that alteration in GSK-3β and circulating and cellular miR-135a-5p
expression may be involved in pathology of NS with different etiology and may be use
as diagnostic biomarker in these patients. However, further research is needed to better
understanding of the relationship between thismicroRNAand target genes in these patients.
Finding the root cause of resistance to steroid can prevent additional treatment options
and disease management.
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AKI Acute kidney injury
CKD Chronic kidney disease
COPD Chronic obstructive pulmonary disease
ECM Extracellular matrix
ESRD End-stage renal disease
FSGS Focal segmental glomerulosclerosis
GBM Glomerular basement membrane
GCs Glucocorticoids
GSK-3 Glycogen synthase kinase-3
IRI Ischemia/reperfusion injury
MGN Membranous glomerulonephritis
MPT Mitochondria permeability transition
NSAIDs Nonsteroidal anti-inflammatory drugs
PBS phosphate buffered saline
ROC Receiver operating characteristic
SD Standard deviation
TRCP1 Transient receptor potential canonical 1.
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