872 research outputs found

    Lessons learned from the development and manufacture of ceramic reusable surface insulation materials for the space shuttle orbiters

    Get PDF
    Three ceramic, reusable surface insulation materials and two borosilicate glass coatings were used in the fabrication of tiles for the Space Shuttle orbiters. Approximately 77,000 tiles were made from these materials for the first three orbiters, Columbia, Challenger, and Discovery. Lessons learned in the development, scale up to production and manufacturing phases of these materials will benefit future production of ceramic reusable surface insulation materials. Processing of raw materials into tile blanks and coating slurries; programming and machining of tiles using numerical controlled milling machines; preparing and spraying tiles with the two coatings; and controlling material shrinkage during the high temperature (2100-2275 F) coating glazing cycles are among the topics discussed

    Isolation and distribution of a Drosophila protein preferentially associated with inactive regions of the genome

    Get PDF
    The distribution patterns of chromosomal proteins from Drosophila can be observed by immunofluorescent staining of the polytene chromosomes from larval salivary glands. We have purified a non-histone chromosomal protein of Mr = 69,000 molecular weight which has a high affinity for DNA with little sequence specificity. Immunofluorescent staining indicates that this protein is preferentially associated with the inactive portions of the genome, including the centric heterochromatin and the condensed bands within the euchromatic arms of the chromosomes. Observation of both the heat shock loci 87A and 87C and the developmentally regulated loci 74EF and 75B shows an inverse correlation between immunofluorescent staining for the Mr = 69,000 protein and for RNA polymerase. The presence of this protein appears to be correlated with the packaging of the chromatin in an inactive form

    Retrotransposons Are the Major Contributors to the Expansion of the Drosophila ananassae Muller F Element

    Get PDF
    The discordance between genome size and the complexity of eukaryotes can partly be attributed to differences in repeat density. The Muller F element (~5.2 Mb) is the smallest chromosome in Drosophila melanogaster, but it is substantially larger (\u3e18.7 Mb) in Drosophila ananassae. To identify the major contributors to the expansion of the F element and to assess their impact, we improved the genome sequence and annotated the genes in a 1.4 Mb region of the D. ananassae F element, and a 1.7 Mb region from the D element for comparison. We find that transposons (particularly LTR and LINE retrotransposons) are major contributors to this expansion (78.6%), while Wolbachia sequences integrated into the D. ananassae genome are minor contributors (0.02%). Both D. melanogaster and D. ananassae F element genes exhibit distinct characteristics compared to D element genes (e.g., larger coding spans, larger introns, more coding exons, lower codon bias), but these differences are exaggerated in D. ananassae. Compared to D. melanogaster, the codon bias observed in D. ananassae F element genes can primarily be attributed to mutational biases instead of selection. The 5’ ends of F element genes in both species are enriched in H3K4me2 while the coding spans are enriched in H3K9me2. Despite differences in repeat density and gene characteristics, D. ananassae F element genes show a similar range of expression levels compared to genes in euchromatic domains. This study improves our understanding of how transposons can affect genome size and how genes can function within highly repetitive domains

    Drosophila RISC Component VIG and Its Homolog Vig2 Impact Heterochromatin Formation

    Get PDF
    Heterochromatin formation plays an important role in gene regulation and the maintenance of genome integrity. Here we present results from a study of the D. melanogaster gene vig, encoding an RNAi complex component and its homolog vig2 (CG11844) that support their involvement in heterochromatin formation and/or maintenance. Protein null mutations vigEP812 and vig2PL470 act as modifiers of Position Effect Variegation (PEV). VIG and Vig2 are present in polytene chromosomes and partially overlap with HP1. Quantitative immunoblots show depletion of HP1 and HP2 (large isoform) in isolated nuclei from the vigEP812 mutant. The vig2PL470 mutant strain demonstrates a decreased level of H3K9me2. Pull-down experiments using antibodies specific to HP1 recovered both VIG and Vig2. The association between HP1 and both VIG and Vig2 proteins depends on an RNA component. The above data and the developmental profiles of the two genes suggest that Vig2 may be involved in heterochromatin targeting and establishment early in development, while VIG may have a role in stabilizing HP1/HP2 chromatin binding during later stages

    A Course-Based Research Experience: How Benefits Change with Increased Investment in Instructional Time

    Get PDF
    There is widespread agreement that science, technology, engineering, and mathematics programs should provide undergraduates with research experience. Practical issues and limited resources, however, make this a challenge. We have developed a bioinformatics project that provides a course-based research experience for students at a diverse group of schools and offers the opportunity to tailor this experience to local curriculum and institution-specific student needs. We assessed both attitude and knowledge gains, looking for insights into how students respond given this wide range of curricular and institutional variables. While different approaches all appear to result in learning gains, we find that a significant investment of course time is required to enable students to show gains commensurate to a summer research experience. An alumni survey revealed that time spent on a research project is also a significant factor in the value former students assign to the experience one or more years later. We conclude: 1) implementation of a bioinformatics project within the biology curriculum provides a mechanism for successfully engaging large numbers of students in undergraduate research; 2) benefits to students are achievable at a wide variety of academic institutions; and 3) successful implementation of course-based research experiences requires significant investment of instructional time for students to gain full benefit

    Optimal heat-induced expression of the Drosophila hsp26 gene requires a promoter sequence containing (CT)n.(GA)n repeats

    Get PDF
    We report here the analysis of the sequence requirements for the heat-induced expression of the Drosophila melanogaster hsp26 gene using germline transformation. Heat-induced expression is augmented fivefold by a homopurine/homopyrimidine region from -85 to -134 that is devoid of heat-shock elements but contains numerous (dC-dT).(dG-dA) repeats. Sequences within this interval have been shown to assume a nuclease S1-hypersensitive structure in vitro. In this paper, we extend those in vitro observations, demonstrating that the S1-hypersensitive structure is triple-helical H-DNA formed by a symmetric (dC-dT).(dG-dA) sequence. Thus, the sequences that form H-DNA in vitro are also required in vivo for optimal hsp26 transcription. However, mutational analysis and diethylpyrocarbonate modification experiments in isolated nuclei suggest that the (dC-dT).(dG-dA) sequence does not form H-DNA in vivo and argue against a role for H-DNA in the heat-induced expression of hsp26
    • …
    corecore