83 research outputs found

    Monitoring corn and soybean crop development by remote sensing techniques

    Get PDF
    A system for spectrally monitoring the stages of crop development for corn and soybeans based upon red and photographic infrared spectral radiances is proposed. The red and photographic infrared spectral radiance, highly correlated with the green leaf area index or green leaf biomass, enable nondestructive monitoring of the crop canopy throughout the growing season. Five distinct periods are apparent which are related to crop development for corn and soybeans

    Relationship of red and photographic infrared spectral radiances to alfalfa biomass, forage water content, percentage canopy cover, and severity of drought stress

    Get PDF
    Red and photographic infrared spectral data were collected using a handheld radiometer for two cuttings of alfalfa. Significant linear and non-linear correlation coefficients were found between the spectral variables and plant height, biomass, forage water content, and estimated canopy cover for the earlier alfalfa cutting. The alfalfa of later cutting experienced a period of severe drought stress which limited growth. The spectral variables were found to be highly correlated with the estimated drought scores for this alfalfa cutting

    Hand-held radiometer red and photographic infrared spectral measurements of agricultural crops

    Get PDF
    Red and photographic infrared radiance data, collected under a variety of conditions at weekly intervals throughout the growing season using a hand-held radiometer, were used to monitor crop growth and development. The vegetation index transformation was used to effectively compensate for the different irradiational conditions encountered during the study period. These data, plotted against time, compared the different crops measured by comparing their green leaf biomass dynamics. This approach, based entirely upon spectral inputs, closely monitors crop growth and development and indicates the promise of ground-based hand-held radiometer measurements of crops

    The Relationship of Red and Photographic Infrared Spectral Data to Grain Yield Variation Within a Winter Wheat Field

    Get PDF
    Two band hand-held radiometer data from a winter wheat field, collected on 21 dates during the spring growing season, were correlated within field final grain yield. Significant linear relationships were found between various combinations of the red and photographic infrared radiance data collected and the grain yield. The spectral data explained approximately 64 percent of the within field grain yield variation. This variation in grain yield could not be explained using meteorological data as these were similar for all areas of the wheat field. Most importantly, data collected early in the spring were highly correlated with grain yield, a five week time window existed from stem elongation through antheses in which the spectral data were most highly correlated with grain yield, and manifestations of wheat canopy water stress were readily apparent in the spectral data

    Remote sensing of total dry-matter accumulation in winter wheat

    Get PDF
    The author has identified the following significant results. Red and photographic-infrared spectral data collected on 21 dates over the growing season with a hand-held radiometer was quantitatively correlated with total dry-matter accumulation in winter wheat. The spectral data were found to be highly related to vigor and condition of the plant canopy. Two periods of drought stress and subsequent recovery from it were readily apparent in the spectral data. Simple ratios of the spectral data compensated for variations in solar intensities and, when integrated over the growing season, explained 79% of the variation in total above-ground accumulation of dry matter

    Genomic Organization of H2Av Containing Nucleosomes in Drosophila Heterochromatin

    Get PDF
    H2Av is a versatile histone variant that plays both positive and negative roles in transcription, DNA repair, and chromatin structure in Drosophila. H2Av, and its broader homolog H2A.Z, tend to be enriched toward 5β€² ends of genes, and exist in both euchromatin and heterochromatin. Its organization around euchromatin genes and other features have been described in many eukaryotic model organisms. However, less is known about H2Av nucleosome organization in heterochromatin. Here we report the properties and organization of individual H2Av nucleosomes around genes and transposable elements located in Drosophila heterochromatic regions. We compare the similarity and differences with that found in euchromatic regions. Our analyses suggest that nucleosomes are intrinsically positioned on inverted repeats of DNA transposable elements such as those related to the β€œ1360” element, but are not intrinsically positioned on retrotransposon-related elements

    Histone H1 Subtypes Differentially Modulate Chromatin Condensation without Preventing ATP-Dependent Remodeling by SWI/SNF or NURF

    Get PDF
    Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on nucleosome spacing, chromatin compaction and ATP-dependent remodeling. H1 subtypes exhibit different affinities for chromatin and different abilities to promote chromatin condensation, as studied with the Atomic Force Microscope. According to this criterion, H1 subtypes can be classified as weak condensers (H1.1 and H1.2), intermediate condensers (H1.3) and strong condensers (H1.0, H1.4, H1.5 and H1x). The variable C-terminal domain is required for nucleosome spacing by H1.4 and is likely responsible for the chromatin condensation properties of the various subtypes, as shown using chimeras between H1.4 and H1.2. In contrast to previous reports with isolated nucleosomes or linear nucleosomal arrays, linker histones at a ratio of one per nucleosome do not preclude remodeling of minichromosomes by yeast SWI/SNF or Drosophila NURF. We hypothesize that the linker histone subtypes are differential organizers of chromatin, rather than general repressors

    Ten principles of heterochromatin formation and function

    Get PDF

    Heterochromatin and the molecular mechanisms of 'parent-of-origin' effects in animals.

    Get PDF
    Twenty five years ago it was proposed that conserved components of constitutive heterochromatin assemble heterochromatinlike complexes in euchromatin and this could provide a general mechanism for regulating heritable (cell-to-cell) changes in gene expressibility. As a special case, differences in the assembly of heterochromatin-like complexes on homologous chromosomes might also regulate the parent-of-origin-dependent gene expression observed in placental mammals. Here, the progress made in the intervening period with emphasis on the role of heterochromatin and heterochromatin-like complexes in parent-of-origin effects in animals is reviewed
    • …
    corecore