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ABSTRACT

Red and photographic4nfrared spectral data collected on 21 dates over the growing season

with a hand-held radiometer were quantitatively correlated with total dry-matter accumulation in

winter wheat. The spectral data were found to be highly related to vigor and condition of the plant

canopy. Two periods of drought stress and subsequent recovery from it were readily apparent in the

spectral data. Simple ratios of the spectral radiance data compensated for variations in solar intensi-

ties send, wlieii integrated over the growing season, explained 79% of the variation in total above-

ground accumulation of dry matter. A satellite system is proposed to provide large—area assess-

ment of total dry accumulation or net primary production from terrestrial vegetation.
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REMOTE SENSING OF TOTAL DRY-MAi'TI,R
ACCUMULATION IN WINTER W11I-IAT

INTRODucTION

The global carbon dioxide (CO2 ) cycle has been the subject of much recent interest and con-

tinties to be the subject of serious international concern (Andersen and Malahoff, 1977, Baes et al.,

1976; Bolin, 1970; Bolin et al,, 1979, Bohn, 1976; Keeling, 19'13; Keeling et al., 1976a and b; Rotty,

1977; Rotty, 1978; SCE P, 1979; Schlesinger, 1979; Stuiver, 1978; Whittaker and Likens, 1975;

Williams, 1978; Woodwell and Houghton, 1977; Woodwell and Pecan, 1973; Woodwell et al., 1978;

Woodwell, 1978).

Remote sensing, with its unique synoptic perspective, has been mentioned as a Possible means

of monitoring the terrestrial vegetation biomass or phytomass. The role of the phyto pass in the

global  CO, cycle is extremely important and involves the amount of carbon stored in various plant

zommuslities of the world, tivitll special emphasis on forested areas awd, in particular, tropical forests

(Atjay et al., 1979; Bolin, 1977; Lemon, 1977; Rodin et al., 1975; Whittaker and Likens, 1975;

Woodwell and Boughton, 1977; Woodwell and Pecan, 1973; Woodwell et al., 1978; Woodwell, 1978).

Remote: sensing techniques might be employed in attempts to satisfy three interrelated requirements

for information about the terrestrial phytomass: the distribution of the various plant communities;

changes in the distribution of the plant communities with time and, particularly, deforestation; and

the net primary productivity of the various plant communities, including regrowth following defor-

estation. Remote sensing unfortunately cannot be used for direct measurement of the carbon stored

as above-ground phytomass.

Numerous studies have shown that remote sensing can be used to accurately map vegetation and

land-use types (Anuta and MacDonald, 1971; Bauer, 1975, Bauer et al., 1979; Bizzcll et al., 1975;

Hay, 1974; Kettig and ,Laudgrebe, 1976; Kumar and Silva, 1977; MacDonald et al., 19721 ; MacDonald

and Hall, 1977; Morian and Williams, 1975; Steiner, 1970), to monitor plant growth and development

through the high correlation of spectral data with the green-leaf biomass or green-leaf area (Holben
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et at., 1980; Kimes et A, 1980; Wlep,, sd ct *it,, 1979), and to monitor deforestation in various forest

types (Miller and Williams, 1978).

Several steadies have shown thet currently used remote-sensing techniques are not sensitive to

stems, wood, dead vegetation, or other non-green-leaf biomass components of plant canopies (Holben

et al., 1980; Kimes et al., 1980; Tucker, 1979), Although new rcnaote-sensing techniques might in

subsequent years enable the direct assessment of the above-ground ph,ytomass carbon world-wide, the

possibility of developing such techniques )Must be considered tenuous at best, This report is restricted

to what is currently thought will be possible in the 1980's and 1990'x.

We report herein on a technique that can be used to assess net primary productivity or total 'dry-

matter accumulation from frequently collected red and photographic-infrared spectral data for winter

wheat canopies, The same technique is thought to be extendable to terrestrial vegetaion in general.

BACKGROUND

Of all the techniques for monitoring vegetation evaluated to date, the use of red (0.60-0.70µm)

and near-infrared (0.75-1.1 µm) spectral data his had the most applications with a variety of vegeta-

tion types. These dataa have been used to estimate the leaf-area index of tropical rain forests (Jordan,

1969), the green-leaf area and biomass of soybeans (l olben et al., 1980) and winter wheat (Wiegand

et al., 1979), estimate forage biomass (Pearson and Miller, 1972; Rouse et al., 1973; Colwell, 1974;

Carneggie et al., 1974; Deering et al., 1975; Pearson et al., 1976b; Maxwell,1976;Tucker et al., 1979a),

monitor greenwave effects in the hardwood forest (Ashley and Rea, 1975; Blair and Baumgardner,

1977), predict grain yield (Colwell et al., 1977; Tucker et al., 1980b; Pinter et al., 1979), monitor

crop condition (Richardson and Wiegand, 1977; Tucker et al., 1980b), and estimate the severity

of drought stress (Thompson and Wehmanen, 1979; Tucker et ail., 1980x). A review of these

techniques is given in Tucker (1979).

Spectral reflectances and radiances in the red region of the electromagnetic spectrum are inversely

related to the in situ chlorophyll density, while spectral reflectances and radiances in the near infrared

region are directly related to the green leaf density (Gates et al., 1965; Knipling, 1970; Woolley, 1971).

2
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If one avoids they 0,70-0.74 pill region, which is not sensitive to green vegetation (Tucker and

Maxwell, 1976), and also avoids near infrared water-vapor-absorption bands at — 0,76.0.77 and —0.92-

0.98 pill 	 1975), the result is a near infrared sensor in the 0.77-0.91 pin region with atmos-

pheric absorption/transmission properties similar to tlim.,c of the 0,60.0.70 pin region in addition to

being highly sensitive to tine green-leaf density. Variations) in the spectral duality between the 0,60-

0.70 and 0.77-0.91 pm bands are minimized because of their close spectral proximity and similar

atmospheric absorption/transmission properties. Simple radiance ratios of these two bands can

therefore br used to effectively compensate for first order variation in the solar spectral irradiance,

These circumstances, coupled with the strong and different relationships of these data to green-plant

canopies, are responsible foi , the usefulness of these data for monitoring vegetation.

EXPERIMENTAL PROCEDURES

Our experiment was conducted in a 1.2-ha soft red winter wheat (Triticunn aestivum L.) field at

the Beltsville Agricultural Research Center, Beltsville, Maryland. The field was plowed, disked, and

planted with the cultivar "Arthur" oil 	 6, 1977, at a seeding rate of 107.6 kg/ha. The seeding

was done with a conventional grain drill, with 17.8 cm between rows. Before seeding the field was

limed according to soil-test recommendations and fertilized with N at 33.3 kg/ha, P at 53.8 kg/ha, and

K at 53.8 kg/ha. The following spring (early March 1978) the crop was topdressed with N at 20.4

kg/ha.

Twenty 2- X 3-m plots in the wheat field were selected during the winter dormant period. Four

pairs of red and pliotograpinie-infrared spectral measurements were taken per plot with a hand-held

digital radiometer (Pearsonn et al., 1976a). Data were collected oil 	 dates between March 21, 1978

(Julian date 80), anti June 1.3, 1978 (Julian date 174), at intervals ranging from 1 to 9 days (Table 1).

The red (0.65-0.70 µnn) and photographic-infrared (0.775-0.825 pm) spectral-radiance data were

used to form the IR/red ratio and tine normalized difference (ND) of Rouse et al. (1973) and Deering

et al., (1.975), where.

ND = (IR - red)/(IR + red)	 (1)

3
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Table 1
Tabular Listing of the Days when Hand-Held Radiometer Data were Collected

from the 20 2 X 3 in Winter Wheat Plots in 1978

Sampling
Sequence

Julian
Date

Time
(UST)

Conditions/Comments
(Temperature, Sky, Wind, Etc.)

1 80 1130.1215 12"C, clear with no clouds, wind = 16 kmh

2 89 121$-1300 8°C, clear with no clouds, calm, soil damp

3 92 1222-1310 15°C, clear with no clouds, calm

4 95 1220-1245 17°C, a few scattered clouds, wind 	 5-10 kmh

5 97 1225-1247 21°C, a few scattered clouds, cal in

6 102 1110-1135 14°C, clear with no clouds, wind = — 5 kmh

7 104 1210-1230 20°C, clear with no clouds, wind = 30.45 kmh

8 112 1338-1415 18°C, scattered clouds, gusty wind = 5-20 kmh

9 118 1230-1310 22°C, clear with no clouds, gusty wind = 5-30 ktnh

10 121 1200-1230 16°C, clear with no clouds, wind = 5-10 kmh

11 123 1215.1250 18°C, clear with no clouds, calm

12 131 1145-1210 24°C, a few scattered clouds, wind = — 10 kmh

13 139 1145-1230 20°C, a few scattered clouds, wind = G15 kmh

14 146 1125-1205 19°C, a few scattered clouds, calm

15 152 1130-1200 22°C, clear with no clouds, wind = 5-10 kmh

16 157 1050-1120 22°C, a few scattered clouds, wind = -10 kmh

17 161 1230-1300 26°C, clear with no clouds, calm

18 165 1030-1125 17°C, a few scattered clouds, wind = 25 .40 kmh

19 166 1100.1200 20°C, high faint cirrus, calm

20 170 1030-1100 20°C, a fern scattered clouds, wind = <10 kmh

21 174 1100-1130 28°C, clear with no clouds, calla

Mean time between sampling dates = 4.7 days
Range between sampling dates =1-9 days
Medium time between sampling dates = 4,5 days (tie)
Table 1 from Tucker et A, 1980b,
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The four pairs of spectral measurements per plot were averaged to account for the spatial vari-

ability present in each plot. All spectral data were collected tinder sunny skies within plus or minus

90 minutes of local solar noon, and measured normal to the ground surface (Table 1).

Throughout the growing season average plant height, estimated percentage of cover, and phen-

ological development were recorded for the field area (Table 2). The crop reached harvest maturity

in late ,tune 1978. On June 28, 1978 (Julian date 179), a 0.9- X 10•m swath was cut from the center

of each plot with a small sickle-bar mower. Total biomass and grain yield were recorded. Grain yield

data were reported by Tucker et al. (1980b). The entire above-ground biomass was oven dried at 60°C

for 72 hours and weighed; the resulting total dry-matter accumulation was expressed in g/rn2.

Table 2
Agronomic Data Pertaining to ,Average Plant Heights,

Estimated Percentage Canopy Cover, and Crop Growth Stages at 10 Selected Dates
for 20 Winter Wlieat Plots (1978)

CMendar Julian Plant Percentage

Growth Stages

Numerical
Date Date Height Cover (after Zadoks Descriptive

(cm) et al., 1974)

04/24/78 114 35.0 54 34 stein elongation, 4th node detect-
able

05/01/78 121 45.2 56 35 steer elongation, 5th node
detectable

05/11/78 131 70.8 66 44 booting, hoots Just visible
05119/78 139 90.8 64 58 inflorescence emerges
05/25/78 145 112.0 68 64 anthesis, half--way
06/01/78 152 112.5 61 73 early milk
06/06/78 157 114.8 63 85 soft dough
06/14/78 165 115.5 64 85 soft dough

06/20/78 171 111.8 51 87 hard dough
06/23/78 174 108.5 51 89 hard dough
06/27/78 178 104.0 51 92 ready for harvest

Table 2 from Tucker et al„ 1980b.
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The data on average red radiance, IR radiances, iR/red ratio, and NO for cacti plot were re-

grossed on the total dry-inaMx accumulation at the end of the season separately for cacti of the 21

sampling dates, in addition, the IR/red ratio and the NO were integrated over Julian sampling dates

and regressed on total dry-€natter accumulation,

RESULTS AND DISCUSSiON

Exuniples of the radiance data and irradiance normalizing ratios were first plotted against Julian

date (Figure I ). The red radiance plotted against Julian date showed the effect of increasing chloro-

phyll absorption (decreasing radiance) to about Julian date 139, when the onset of senescence re-

stilted in progressively higher levels of radiance (Figure I a) ((lower levels of absorption)) . The photo-

graphic infrared radiance, in contrast, gradually increased with time to about Julian date 139, when

the onset of senescence resulted in progressively lower levels of radiance in this band (Figure 1 b).

nis cha€ige resulted from the direct relationship of the photographic infrared radiance to the green

leaf density of the wheat canopy. The IR/red radiance ratio and the NO both exhibited similar trends

with respect to Julian date (Figures I  and Id, respectively.)

The trends with respect to Julian date for IR/red radianc y: ratio and the ND for our 20 plots

were similar in character (figure 2). Five component trends were apparent with respect to Julian

date; (1) Both the IR/red radiance ratio and tlae^ND increased as the spring portion of the growing season

began, but the rate of increase diminished as Julian date 102 approached; (2) Both spectral variables

increased rapidly between Julian dates 102 and 112 because of precipitation on Julian dates 102-104;

(3) Both spectral variables declined from Julian dates 112-123, when precipitation was lacking,

(4) Heavy rains on Julian dates 124427 and 132-136 resulted in increases in both the IR/red radiance

ratio and the ND; (5) Late-season senescence paused a decrease in both the IR/red radiance ratio and

the ND approximately between Julian dates 139 and 175 (this decrease resulted from chlorophyll

breakdown aiid the loss of green leaf area in the wheat canopy, and was visually perceptible as a

gradual yellowing of the wheat canopy,) We observed these same rive temporal trends in various de-

grees for all of our 20 experimental Mots,

s,
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Figure 1, (A) Red radiance; (B) Photographic infrared radiance; (C)1R/red radiance ratio; and (D) the
normalized difference (ND) plotted Against Julian date for one of 20 wheat plots sampled. Note how
the lR/red radiance ratio and the normalized difference effectively compensate for the variability
present in the radiance data. (Figure 1 from Tucker et al., 1980b)
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The modulation of the IR/red radiance .ratio and ND with respect to precipitation was an example

of spectral detcc ►ion of wheat -ri , ,opy water stress and was consistent with previously published results

(Thompson and Wehmanen,1979;Tucker at al., 1980a). Factors that adversely affect plant growth

and development are readily apparent in the spectral data if they affect either the chlorophyll density

or the green-leaf biomass. Tranfient wheat-canopy water stress in this case was expressed spectrally

largely because of a reduction in the leaf chlorophyll density. The spectral expression of this reduc-

tion was apparent in Figure la the increase in the 0.65 .0.70µm radiance (Le., decrease in absorption)

for Julian dates 102 and 123 corresponded to the relative maximum for each of the two episodes of

water stress. The 0.775-0.824 pm radiance, in contrast, was not as greatly affected by the episodes

of transient water stress (Figure 1 b). These differences implied that the green-leaf area remained

fairly constant while the leaf chlorophyll density was temporarily reduced, either through photooxi-

dation, enzymatic activity, or some other reduchig mechanism (Tucker at al., 1975; Tucker et al.,

1980a). The possibility that canopy geometry changes with water stress must also be considered,

although visual signs of wilting were not readily apparent.

The next phase of the analysis was the regression of the spectral data on the total dry-matter

accumulation sampled at the end of the growing season for each of the 21 sampling dates (Figure 3,

Table 3). Correlation coefficients were small and often not significant for the first four sampling

dates; however correlation coefficients for dates S through 9 were highly significant (note the marked

decrease in the correlation coefficient at sampling date 7, which was attributed to high winds [see

Table 1)), Correlation coefficients declined for dates 20 and 21 (Table 3) as senescence progressed.

We observed a 45-day period (between Julian. dates 112 and 157) in which our spectral data were

more highly and significantly correlated to the total dry-matter accumulation than they were earlier

in the growing season (Figure 4, Table 3). However, the predicted regression relationships were not

constant during this period (Table 4). This variation indicated that a different remote sensing approach

was needed.
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Figure 3, The Ill/red radiance ratio and normalized difference plotted against total aboveground
dry matter accumulation on May 19, 1978 (Jullan date 139). The total dry matter accumulations
were sampled at the end of the growing, season.

Inspection of Figure 2 indicated that spectral data such as ours need to be collected often enough

Mat they accurately represent the dynamic nature of plant canopy growth and development in response

to envi ronmental conditions. The character of our spectral dsta, which literally reflected the wheat

canopy's vigor and condition, would be substantially different with an average interval of 9 or 18 days,

instead of 4.7, between sampling dates.

We next evaluated integrating the red and photographic-infrared spectral data over Julian dates.

Comparison of the data in Figure 2 with precipitation data showed that the IR/red radiance ratio

and the ND increased when conditions were favorable, so these ratios thus appear to represent

the wheat canopy vigor. Therefore, b y integrating these data over Julian dates, we were able to

summarize the growing-season dynamics for the wheat plots in our study (Figures S and 6). Using

this techniq ue we found that IR/red radiance ratio and ND, integrated over all Julian sampling dates,

explained 76% anti 79`7x, respectively, of the variation in total dry-matter accumulation.

It should he noted that the spectral data in our study were correlated only with the above-

ground total airy biomass, Plants suffering front water-uptake deficiencies have been reporte(l to allo-

cate proportionally more of their growth below ground and less above ground than plants of the same

10
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Table 3
Correlation Coefficients for the Four Radiance Variables and

Total Dry Matter Accumulation for Each of the 21 Days where Spectral Data
were Collected in 1978 for the 20 Winter Wheat Plots. Refer also to Figure 4.

Sampling
Sequence

Julian
Date

Red
Radiance

IR
Radiance

IR/Red
Radiance Ratio

Normalized
Difference

1 80 0.23 0.55* 0.23 0.23

2 89 -0.45* 0.58** 0,53* 0,54*

3 92 -0.26 0.46* 0.38 0.35

4 95 -0.41 0.46* 0.53* 0,50*

5 97 -0.84** 0.88** 0.80** 0,88**

6 102 -0.83** 0.88** 0.78** 0.86**

7 104 -0.54* 0.70** 0.64** 0.62**

8 112 -0.81** 0.85* 0.81** 0.84**

9 118 -.88** 0.82**	 • 0,82** 0.89**

10 121 -0.88 0.74** 0.88** 0.91**

11 123 -0.85** 0.82** 0.82** 0,88**

12 131 -0.84** 0.84** 0.85** 0.86**

13 139 -0.85** 0.91** 0,93** 0.88**

14 146 -0.79** 0.89** 0.86** 0.83**

15 152 -0.82** 0.77** 0.83** 0.83**

16 157 -0.80** 0.73** 0.80** 0.81**

17 161 -0.60** 0.77** 0.72** 0.71**

18 165 -0.54* 0.56* 0.61** 0.59**

19 166 -0.59** 0.47* 0.62** 0.61**

20 170 0.16 0.44* 0.29 0.27

21 174 0.50* -0.19 -0.55* -0.54*

*Significant at the .05 level of probability

*Significant at the .01 level of probability

11
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Figure 4. Coefficients of determination resulting from regressing the (A)1R/red radiance
ratio or (l3) normalized difference against total dry matter accumulation for each of the
21 ditto collection dates. The r'- values presented in Figure 4 are platted against Julian
ditto along with respective r2 values for the other 20 dates. Note bow ilia normalized
difference was more highly correlated to total dry matter accumulation than was the
lR/red radiance ratio earlier in the growing season.
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Tablo 4

Derived J:sjjmates for 00 and Pt for hills n elates 1 12-157 using tlae
IR/Red Radiance Ratio and the Normalized Ditferonce to 1'reclict

Total Dry Matter Accumulation. The Eclumlota Used was of the Form
'1`oTAL DRY MATTER (8/m 2 ) a #0 + P I (Spectral Variable).

Sampling
Period

,taaliata
Mate

IRNED Radiance Ratio Normalized Difference

PO P1
ra iqp P, r3

8 112 486.6 56.4 0,65 -51.1 1298.5 0,71

9 118 $11.0 5711 0.68 7,0 1258.3 0.80

10 121 483.2 $7.5 0.77 36.8 1188.3 0.82

11 123 494.6 68.8 0.67 96.2 1180.0 0.78

12 1"
1

424.2 561 8 0.73 -258.4 1506.1 0.74

13 139 306.2 65,7 0.86 -560.8 1848.5 0.78

14 146 297.7 79.4 0.74 -414.5 1733,3 0.69

15 152 243.7 102.2 0.69 -416.8 1885.8 0.69

16 1.57 375.4 133.35 0.64 -199.0 1730.5 0.66
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Figure S. The (A) Ili/reel radintice rattio and (13) noruulltxed difference are }Matted against Jullan date.
Coefficients of determination (0) were calculated for several time Itericlds by Integrating under elicit
curve of the twenty plots and correlating the integrated areas to the total city matter accuntttlation.
See also Pig, 0,
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species in the same stage of growth that are not having water-uptake deficiencies (Coleman, 1975).

Considering only the above-ground total accumulation of dry matter thus introduces a slight error.

It is likely that more significant correlations would result between the spectral data and total below-

ground and above-ground dry matter accumulation. However, determination of below-ground total

accumulation of dry matter is extremely tedious, laborious, and time consuming because it includes

digging and washing of roots, and such data are not usually available, Thus we confined our study to

the above-ground total accumulation of (fry matter.

We feel that our results showing clear relationships between spectral values and dry-matter accu-

mulation are sufficiently encouraging to warrant use of it similar technique on other plant communi-

ties. We acknowledge that our results were obtained froth small experimental plots (2 X 3 in) in

single field, and that the data used herein represent a narrow range of total dry-matter accumulation

(i.e., in these plots the planting density, soil types, microclimate, etc., were very similar). However,

the validity of this method for monitoring dry-matter accumulation and its extension to other

herbaceous vegetation can easily be tested with hand-held radiometers in a variety of ecological

settings.

LARGE SCALE APPLICATION OF THESE FINDINGS

The research results reported herein were from small experimental plots using ground-collected

spectral data. Global or regional assessment of net primary production, however, can only be accom-

plislied with satellite observation systems. Earth resource satellites alone allow for the synop-

tic, repetitive, and sun-synchronous coverage necessary for large-area assessment of net primary pro-

duction. We will now discuss the capabilities of existing and proposed satellite systems for assessing

net primary production via remotely sensed spectral data,

Tlie basic requirements of any satellite system for achieving the assessment of net primary pro-

duction involve frequent data collection, suitable red and photographic infrared spectral bands,

suitable radiometric resolution, and suitable spatial resolution. Definition of the frequency of data

15



collection is evident front the experimental data presented lit this report. An important prerequisite

for successful satellite application of this technique Is to have frequently collected spectral (Iota (4-10

days). Spectral band selection is rather straightforward and involves the choice of only two bonds

with maxintunt background spectra—green vegetation spectral contrasts and simultaneously avoiding

or minlatizing atmospheric transmission/absorption effects while maintaining a high NEAp. A band

hi the red and a band in photographic infrared arc sugSested after Tucker (1979) as arc 256 quantiz-

ing levels. Suitable spatial resolution, however, poses a more difficult question.

The spatial resolution require mints) depend to a large extent upon the information needs of

the user, Pot, regional or large area studies, a larger instantaneous field of view (IFOV) is desirable.

It would be impractical, for example, to attempt to use Landsat-MSS data for any large area assess-

ment of net primary productivity. The 80 in IFOV is shnply too small and this results in a substatt-

tial volume of data to be processed, stored, etc, For a regional inventory, a 200-1000 in IFOV would

be desirable. This larger IFOV would result in a dramatic decrease in the remount of data from the

area lit 	 and, accordingly, more data could be collected, A small. IFOV is not required for our

proposed purpose and would actually be it

It is desireable to have the maximum swath width possible without introducing significant at-

mospheric variability into the spectral data its it result of atmospheric path radiance differences (i.e.,

nadir vs, extreme side scans). l ►► addition, the total field of view of the satellite sensor system is re-

stricted by plant canopy bidirectional affects, For these reasons, it will be necessary to restrict tite

half angle field of view of the proposed satellite sensor system to — 10°. For in orbital altitude of

—900kin, this results in a maximum swath-width of ^-300 km,

UTi'LITY OF GXiSTING AND PROPOSED SA` E'LL.ITE' SYSTCNIS

The existing and proposed satellite systems which could be employed for conducting regional

large area net primary production studies fall into two main categories. The Landsat MSS, Landsat-Q's

thematic mapper, and the Drench (CN1 S) SPOT satellites all are primarily earth resource satellites

and have spatial resolutions less than — 80m (80m, 30th, and 20►n, respectively, in the spectral mode),

16



Tile other group include Nimbus-17 s coastal zone color scanner (C7CS) and the TIROS-N-NOAA

AVHRR instruments with spatial resolutions of 825m and l 100m, respectively. Several pertinent

characteristics of each of these satellite iy..lems are listed in Table 5.

Table 5
Satellite System Parameters for Instrumemtts which Could be of Possible Use

for Providing Net Primary Prodirletion Information

Satellite
Systems

Appropriate
Spectral
Bands
(pin)

lEOV
(tn)

Swath
Width
(kill)

Orbital
Alt.

(km)

Equatorial
Crossing Time

(LST)
A= Ascending
D = Descending

SPOT 0.61.0,69 20 117 822 10.,0-D
(CNP.S)* 0.79.0.90

TM 0.63-0.69 30 180 716 0930-D
(Lfundsat-D)** 0.76.0.90

MSS 0.6-0.7 80 180 919 0930-D
0.7-0.8 or
0,8-1.1

CGCS 0,660-0.680 825 1566 955 1200-A
(NIMBUS-7) 0.700-0.800 2400-D

tAV1IRR I *** 0.55-0.90 1100 horizon to 833 0900-D
0.725-1.10 horizon 1500-A

AVFIRR2 **** 0,55.0.6E 1100 horizon to 833 0730.1)
0.725-1.10 horizon 1500-A

*Scheduled for launch in 1983.
*Scheduled for launch in 1981 or 1982,

* **AVHRR on ,r[ROS-N.
* ***AVHRR on NOAA series; The five channel instruments have a slight change to the red band of 0.58.0,68 pin,

tThe 0.55 .0.90 pm band on TIROS•N is not applicable for monitoring primary productivity
because of its bandwidth.

It is apparent from Table 5 that a satellite system similar to the one we propose does not, nor is

currently planned to exist in the immediate future. We propose that a relatively coarse spatial reso-

lution earth observation series of satellites be seriously considered which would have at least a .red
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band and photographic infrared band for the expressed purpose of monitoring terrestrial net primary

production. Three of those "primary production satellites" in orbit simultaneously would result in

45 day repent coverage and would provide a necessary and currently missing input into our under-

standing of the terrestrial phytomass and its relationship to the carbon dioxide question, In addition,

primary production data as we propose would have applications for other large-area ecological put-

poses such as deforrestation, drought analysis, desertification, acid rain, and Any other occurrences

which adversely affect primary production over large areas. Evaluation of our proposal could be

undertaken using AVMitlt 2 data from NOAA-B which is scheduled for launch in May, 1980,

CONCLUSIONS

1. lied and photographic infrared spectral data were found to be highly related to canopy vigor of

winter wheat and its response to rainfall after mild drought.

2. The IRjrcd radiance ratio and the normalized difference integrated over spectral sampling dates

were found to be strongly related to above:-ground total accumulation of dry matter in winter

wheat,

3. A satellite system is proposed to allow large-area assessment of net primary production or total

dry matter accumulation. This information would have immediate use in addressing some of

the questions associated with the role of the terrestrial phytomass in the carbon dioxide cycle.

In addition, this information would provide large-area primary production data for monitoring

desertification, drought, deforestation, acid rain, and many other occurrences which adversely

affect plant growth and de^relopment.
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