17 research outputs found

    Environmental and biochemical controls on the molecular distribution and stable isotope composition of leaf wax biomarkers

    Get PDF
    Leaf wax n-alkyl lipids are increasingly used as proxies in palaeoclimate studies. Palaeovegetation assemblages are reconstructed from their molecular distribution patterns, while their δ13C and δ2H signals are thought to reflect plant-environment interactions and palaeohydrological shifts, respectively. Such applications depend, however, upon these compounds faithfully recording environmental conditions. To explore the influence of environmental, physical and biochemical controls on n-alkane composition, leaf waxes from seven UK saltmarsh plants were analysed over two growing seasons. Linked analysis of sedimentary n-alkanes enabled further investigation of leaf wax biomarker integration into saltmarsh sediments. The molecular distribution and concentration of n-alkanes from the saltmarsh plants varied significantly. Bulk and n-alkane δ13C recorded different seasonal shifts, with a range of up to 13‰ in the offset between bulk and n-alkane 13C/12C values. This indicated that post-photosynthetic 13C/12C fractionation may be an important additional control on n-alkane δ13C signals. n-Alkane δ2H also varied among the sampled species by >100‰, and could not be explained by physical processes controlling the movement of water inside/outside and within leaves. Comparison with the 2H/1H of chloroplast-synthesised compounds (fatty acids, phytol) suggested these differences instead reflected the varied biochemical mechanisms operating in the chloroplast and cytosol. Sedimentary biomarker analysis further highlighted that small/moderate vegetation change could drive shifts of ~40‰ in sedimentary nalkane 2H/1H, while using globally averaged “typical” values to correct for fractionation between source water and n-alkane 2H/1H may not be representative of a specific geographical location. Results demonstrate: (i) the importance of biochemical mechanisms in controlling the molecular and isotopic composition of n-alkyl lipids; and (ii) the need to further constrain the influence of vegetation change on the isotope composition of sedimentary n-alkanes. Future research should address these areas in other biomes and depositional environments, to ensure accurate interpretation of modern and ancient leaf wax lipid data

    Molecular and isotopic investigations of pottery and “charred remains” from Sannai Maruyama and Sannai Maruyama No. 9, Aomori Prefecture.

    Get PDF
    This paper presents a preliminary study of the analysis of organic residues of Early and Middle Jomon pottery and ‘charred remains.’ Samples are taken from the Sannai Maruyama site and the Sannai Maruyama No. 9 site in Aomori City, Aomori Prefecture in northern Japan. The following questions are addressed in this study: (i) Do organic residues survive in association with pottery vessels and charred remains? (ii) Can the residues be identified based on molecular and isotopic criteria applied in other investigations? (iii) Are the residues associated with the charred remains common to the residues associated with the pottery vessels? (iv) How do these residues contribute to our understanding of food processing and consumption? Results of our analysis indicate that the lipid composition of the pottery extracts is remarkably similar although some of the sherds exhibited better preservation and a wider range of molecules were detected albeit in lower abundance. There is a marked contrast with the composition of the lipid extracts of the ‘charred remains.’ The lipid compositions of sample sets from Sannai Maruyama and Sannai Maruyama No. 9 suggest aquatic resources in the pottery but with a plant contribution. The ‘charred remains’ from Sannai Maruyama contain plant tissues most likely with a high starch composition such as nuts. Lipids were recovered from the majority of the samples

    First molecular and isotopic evidence of millet processing in prehistoric pottery vessels

    Get PDF
    Analysis of organic residues in pottery vessels has been successful in detecting a range of animal and plant products as indicators of food preparation and consumption in the past. However, the identification of plant remains, especially grain crops in pottery, has proved elusive. Extending the spectrum is highly desirable, not only to strengthen our understanding of the dispersal of crops from centres of domestication but also to determine modes of food processing, artefact function and the culinary significance of the crop. Here, we propose a new approach to identify millet in pottery vessels, a crop that spread throughout much of Eurasia during prehistory following its domestication, most likely in northern China. We report the successful identification of miliacin (olean-18-en-3β-ol methyl ether), a pentacyclic triterpene methyl ether that is enriched in grains of common/broomcorn millet (Panicum miliaceum), in Bronze Age pottery vessels from the Korean Peninsula and northern Europe. The presence of millet is supported by enriched carbon stable isotope values of bulk charred organic matter sampled from pottery vessel surfaces and extracted n-alkanoic acids, consistent with a C4 plant origin. These data represent the first identification of millet in archaeological ceramic vessels, providing a means to track the introduction, spread and consumption of this important crop

    Ancient lipids document continuity in the use of early hunter-gatherer pottery through 9,000 years of Japanese prehistory

    Get PDF
    The earliest pots in the world are from East Asia and date to the Late Pleistocene. However, ceramic vessels were only produced in large numbers during the warmer and more stable climatic conditions of the Holocene. It has long been assumed that the expansion of pottery was linked with increased sedentism and exploitation of new resources that became available with the ameliorated climate, but this hypothesis has never been tested. Through chemical analysis of their contents, we herein investigate the use of pottery across an exceptionally long 9,000-y sequence from the Jōmon site of Torihama inwestern Japan, intermittently occupied from the Late Pleistocene to the mid-Holocene. Molecular and isotopic analyses of lipids from 143 vessels provides clear evidence that pottery across this sequence was predominantly used for cooking marine and freshwater resources, with evidence for diversification in the range of aquatic products processed during the Holocene. Conversely, there is little indication that ruminant animals or plants were processed in pottery, although it is evident from the faunal and macrobotanical remains that these foods were heavily exploited. Supported by other residue analysis data from Japan, our results show that the link between pottery and fishing was established in the Late Paleolithic and lasted well into the Holocene, despite environmental and socio-economic change. Cooking aquatic products in pottery represents an enduring social aspect of East Asian hunter-gatherers, a tradition based on a dependable technology for exploiting a sustainable resource in an uncertain and changing world

    The impact of environmental change on the use of early pottery by East Asian hunter-gatherers

    Get PDF
    The invention of pottery was a fundamental technological advancement with far-reaching economic and cultural consequences. Pottery containers first emerged in East Asia during the Late Pleistocene in a wide range of environmental settings, but became particularly prominent and much more widely dispersed after climatic warming at the start of the Holocene. Some archaeologists argue that this increasing usage was driven by environmental factors, as warmer climates would have generated a wider range of terrestrial plant and animal resources that required processing in pottery. However, this hypothesis has never been directly tested. Here, in one of the largest studies of its kind, we conducted organic residue analysis of >800 pottery vessels selected from 46 Late Pleistocene and Early Holocene sites located across the Japanese archipelago to identify their contents. Our results demonstrate that pottery had a strong association with the processing of aquatic resources, irrespective of the ecological setting. Contrary to expectations, this association remained stable even after the onset of Holocene warming, including in more southerly areas, where expanding forests provided new opportunities for hunting and gathering. Nevertheless, the results indicate that a broader array of aquatic resources was processed in pottery after the start of the Holocene. We suggest this marks a significant change in the role of pottery of hunter-gatherers, corresponding to an increased volume of production, greater variation in forms and sizes, the rise of intensified fishing, the onset of shellfish exploitation, and reduced residential mobility
    corecore