497 research outputs found

    IIR Adaptive Filters for Detection of Gravitational Waves from Coalescing Binaries

    Full text link
    In this paper we propose a new strategy for gravitational waves detection from coalescing binaries, using IIR Adaptive Line Enhancer (ALE) filters. This strategy is a classical hierarchical strategy in which the ALE filters have the role of triggers, used to select data chunks which may contain gravitational events, to be further analyzed with more refined optimal techniques, like the the classical Matched Filter Technique. After a direct comparison of the performances of ALE filters with the Wiener-Komolgoroff optimum filters (matched filters), necessary to discuss their performance and to evaluate the statistical limitation in their use as triggers, we performed a series of tests, demonstrating that these filters are quite promising both for the relatively small computational power needed and for the robustness of the algorithms used. The performed tests have shown a weak point of ALE filters, that we fixed by introducing a further strategy, based on a dynamic bank of ALE filters, running simultaneously, but started after fixed delay times. The results of this global trigger strategy seems to be very promising, and can be already used in the present interferometers, since it has the great advantage of requiring a quite small computational power and can easily run in real-time, in parallel with other data analysis algorithms.Comment: Accepted at SPIE: "Astronomical Telescopes and Instrumentation". 9 pages, 3 figure

    Asymptotic analysis of a family of non-local functionals on sets

    Get PDF
    We study the asymptotic behavior of a family of functionals which penalize a short-range interaction of convolution type between a finite perimeter set and its complement. We first compute the pointwise limit and we obtain a lower estimate on more regulars sets. Finally, some examples are discussed

    An Efficient Time-Varying Filter for Detrending and Bandwidth Limiting the Heart Rate Variability Tachogram without Resampling: MATLAB Open-Source Code and Internet Web-Based Implementation

    Get PDF
    The heart rate variability (HRV) signal derived from the ECG is a beat-to-beat record of RR intervals and is, as a time series, irregularly sampled. It is common engineering practice to resample this record, typically at 4 Hz, onto a regular time axis for analysis in advance of time domain filtering and spectral analysis based on the DFT. However, it is recognised that resampling introduces noise and frequency bias. The present work describes the implementation of a time-varying filter using a smoothing priors approach based on a Gaussian process model, which does not require data to be regular in time. Its output is directly compatible with the Lomb-Scargle algorithm for power density estimation. A web-based demonstration is available over the Internet for exemplar data. The MATLAB (MathWorks Inc.) code can be downloaded as open source

    Properties of graphene-related materials controlling the thermal conductivity of their polymer nanocomposites

    Get PDF
    Different types of graphene-related materials (GRM) are industrially available and have been exploited for thermal conductivity enhancement in polymers. These include materials with very different features, in terms of thickness, lateral size and composition, especially concerning the oxygen to carbon ratio and the possible presence of surface functionalization. Due to the variability of GRM properties, the differences in polymer nanocomposites preparation methods and the microstructures obtained, a large scatter of thermal conductivity performance is found in literature. However, detailed correlations between GRM-based nanocomposites features, including nanoplatelets thickness and size, defectiveness, composition and dispersion, with their thermal conductivity remain mostly undefined. In the present paper, the thermal conductivity of GRM-based polymer nanocomposites, prepared by melt polymerization of cyclic polybutylene terephtalate oligomers and exploiting 13 different GRM grades, was investigated. The selected GRM, covering a wide range of specific surface area, size and defectiveness, secure a sound basis for the understanding of the effect of GRM properties on the thermal conductivity of their relevant polymer nanocomposites. Indeed, the obtained thermal conductivity appeares to depend on the interplay between the above GRM feature. In particular, the combination of low GRM defectiveness and high filler percolation density was found to maximize the thermal conductivity of nanocomposites

    Aspirin modulates LPS-induced nitric oxide release in rat glial cells

    Get PDF
    Nitric oxide and prostaglandins are among the numerous substances released by activated glial cells. The aim of this study was to evaluate the effect of high-level aspirin on iNOS expression in cultured rat glial cells treated with lipopolysaccharide (LPS) as pathological stimulator. Using Western Blotting, we verified that aspirin enhanced LPS-induced iNOS expression and the presence of 15-deoxy-Delta(12,14)-prostaglandin (15d-PGJ(2)) suppressed this aspirin effect. However, the exposure of LPS-treated glial cells to aspirin resulted in a decrease of NO production. These results suggest that aspirin interferes with the cross-talk of prostaglandins and NO, blocking the endogenous negative control exerted by COX products on iNOS expression. On the other side, aspirin seems to act directly on iNOS reducing its activity, even if it does not completely block NO release by LPS-stimulated glial cells. Then aspirin could maintain homeostatic functions of NO, while it prevents toxic effects, corresponding to high NO concentrations. (c) 2005 Elsevier Ireland Ltd. All rights reserved

    Effect of polyphenolic compounds on the proteolytic activities of constitutive and immuno-proteasomes

    Get PDF
    The effect of several polyphenols on the 20S proteasomes, both the constitutive and the LMP proteasomes, isolated from bovine tissues, has been investigated. Polyphenolic compounds show many biological activities such as antiviral, antibacterial, antifungal, anti-inflammatory, antimutagenic, and antiallergic activities. However, the molecular mechanism underlying these effects has not been identified. It is well established that polyphenols possess inhibitory activities on several enzymes and among them the 20S proteasome. In the present work, the ChT-L, BrAAP, PGPH, and T-L activities of the isolated constitutive and immuno-proteasomes were assayed in order to get an overall information on the polyphenols binding to the complexes. The effects of the polyphenols on the proteasomal activities were analyzed, taking into account the different subunits composition of the two complexes. Furthermore the same activities were measured on whole extracts from cancer cells exposed to EGCG and gallic acid, evaluating, also, their antioxidant action under oxidative stress. EGCG and gallic acid are able to affect the 20S proteasomes functionality, depending on the complex subunit composition and, in cell extracts, they behave both as antioxidants and proteasome effectors

    20S proteasome mediated degradation of DHFR: implications in neurodegenerative disorders

    Get PDF
    The 20S proteasome is responsible for the degradation of protein substrates implicated in the onset and progression of neurodegenerative disorders, such as a-synuclein and tau protein. Here we show that the 20S proteasome isolated from bovine brain directly hydrolyzes, in vitro, the dihydrofolate reductase (DHFR), demonstrated to be involved in the pathogenesis of neurodegenerative diseases. Furthermore, the DHFR susceptibility to proteolysis is enhanced by oxidative conditions induced by peroxynitrite, mimicking the oxidative environment typical of these disorders. The results obtained suggest that the folate metabolism may be impaired by an increased degradation of DHFR, mediated by the 20S proteasome

    Acid-Stable Serine Proteinase Inhibitors in the Urine of Alzheimer Disease Subjects

    Get PDF
    A comparative study of the levels of acid-stable proteinase inhibitors (kallikrein and trypsin inhibitors) in the urine of healthy and Alzheimer subjects, of both sexes, has been performed. A preliminary characterization of the purified inhibitors indicates that the urinary antitryptic activity is accounted for by the presence of the well known Urinary Trypsin Inhibitor (UTI) while an apparently new molecule appears to be responsible for the anti kallikrein activity. The urinary levels of kallikrein inhibitors are very similar in healthy and sick subjects while the levels of trypsin inhibitors appear significatively increased in Alzheimer subjects of both sexes. The data presented here support the hypothesis that unpaired proteolytic processes could be involved in the pathogenesis of Alzheimer's disease and suggest that the levels of urinary acid-stable inhibitors may prove to be useful markers of the disease
    corecore