43 research outputs found

    Strong ion difference in urine: new perspectives in acid-base assessment

    Get PDF
    The plasmatic strong ion difference (SID) is the difference between positively and negatively charged strong ions. At pH 7.4, temperature 37°C and partial carbon dioxide tension 40 mmHg, the ideal value of SID is 42 mEq/l. The buffer base is the sum of negatively charged weak acids ([HCO(3)(-)], [A(-)], [H(2)PO(4)(-)]) and its normal value is 42 mEq/l. According to the law of electroneutrality, the amount of positive and negative charges must be equal, and therefore the SID value is equal to the buffer base value. The easiest assessment of metabolic acidosis/alkalosis relies on the base excess calculation: buffer base(actual )- buffer base(ideal )= SID(actual )- SID(ideal). The SID approach allows one to appreciate the relationship between acid–base and electrolyte equilibrium from a unique perspective, and here we describe a comprehensive model of this equilibrium. The extracellular volume is characterized by a given SID, which is a function of baseline conditions, endogenous and exogenous input (endogenous production and infusion), and urinary output. Of note, volume modifications vary the concentration of charges in the solution. An expansion of extracellular volume leads to acidosis (SID decreases), whereas a contraction of extracellular volume leads to alkalosis (SID increases). A thorough understanding of acid–base equilibrium mandates recognition of the importance of urinary SID

    Chest wall mechanics during pressure support ventilation

    Get PDF
    INTRODUCTION: During pressure support ventilation (PSV) a part of the breathing pattern is controlled by the patient, and synchronization of respiratory muscle action and the resulting chest wall kinematics is a valid indicator of the patient's adaptation to the ventilator. The aim of the present study was to analyze the effects of different PSV settings on ventilatory pattern, total and compartmental chest wall kinematics and dynamics, muscle pressures and work of breathing in patients with acute lung injury. METHOD: In nine patients four different levels of PSV (5, 10, 15 and 25 cmH(2)O) were randomly applied with the same level of positive end-expiratory pressure (10 cmH(2)O). Flow, airway opening, and oesophageal and gastric pressures were measured, and volume variations for the entire chest wall, the ribcage and abdominal compartments were recorded by opto-electronic plethysmography. The pressure and the work generated by the diaphragm, rib cage and abdominal muscles were determined using dynamic pressure-volume loops in the various phases of each respiratory cycle: pre-triggering, post-triggering with the patient's effort combining with the action of the ventilator, pressurization and expiration. The complete breathing pattern was measured and correlated with chest wall kinematics and dynamics. RESULTS: At the various levels of pressure support applied, minute ventilation was constant, with large variations in breathing frequency/ tidal volume ratio. At pressure support levels below 15 cmH(2)O the following increased: the pressure developed by the inspiratory muscles, the contribution of the rib cage compartment to the total tidal volume, the phase shift between rib cage and abdominal compartments, the post-inspiratory action of the inspiratory rib cage muscles, and the expiratory muscle activity. CONCLUSION: During PSV, the ventilatory pattern is very different at different levels of pressure support; in patients with acute lung injury pressure support greater than 10 cmH(2)O permits homogeneous recruitment of respiratory muscles, with resulting synchronous thoraco-abdominal expansion

    Effects of thoraco-pelvic supports during prone position in patients with acute lung injury/acute respiratory distress syndrome: a physiological study

    Get PDF
    INTRODUCTION: This study sought to assess whether the use of thoraco-pelvic supports during prone positioning in patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) improves, deteriorates or leaves unmodified gas exchange, hemodynamics and respiratory mechanics. METHODS: We studied 11 patients with ALI/ARDS, sedated and paralyzed, mechanically ventilated in volume control ventilation. Prone positioning with or without thoraco-pelvic supports was applied in a random sequence and maintained for a 1-hour period without changing the ventilation setting. In four healthy subjects the pressures between the body and the contact surface were measured with and without thoraco-pelvic supports. Oxygenation variables (arterial and central venous), physiologic dead space, end-expiratory lung volume (helium dilution technique) and respiratory mechanics (partitioned between lung and chest wall) were measured after 60 minutes in each condition. RESULTS: With thoraco-pelvic supports, the contact pressures almost doubled in comparison with those measured without supports (19.1 ± 15.2 versus 10.8 ± 7.0 cmH(2)O, p ≤ 0.05; means ± SD). The oxygenation-related variables were not different in the prone position, with or without thoraco-pelvic supports; neither were the CO(2)-related variables. The lung volumes were similar in the prone position with and without thoraco-pelvic supports. The use of thoraco-pelvic supports, however, did lead to a significant decrease in chest wall compliance from 158.1 ± 77.8 to 102.5 ± 38.0 ml/cmH(2)O and a significantly increased pleural pressure from 4.3 ± 1.9 to 6.1 ± 1.8 cmH(2)O, in comparison with the prone position without supports. Moreover, when thoraco-pelvic supports were added, heart rate increased significantly from 82.1 ± 17.9 to 86.7 ± 16.7 beats/minute and stroke volume index decreased significantly from 37.8 ± 6.8 to 34.9 ± 5.4 ml/m(2). The increase in pleural pressure change was associated with a significant increase in heart rate (p = 0.0003) and decrease in stroke volume index (p = 0.0241). CONCLUSION: The application of thoraco-pelvic supports decreases chest wall compliance, increases pleural pressure and slightly deteriorates hemodynamics without any advantage in gas exchange. Consequently, we stopped their use in clinical practice

    Lung anatomy, energy load, and ventilator-induced lung injury

    Get PDF
    High tidal volume can cause ventilator-induced lung injury (VILI), but positive end-expiratory pressure (PEEP) is thought to be protective. We aimed to find the volumetric VILI threshold and see whether PEEP is protective per se or indirectly

    Association of COVID-19 Vaccinations With Intensive Care Unit Admissions and Outcome of Critically Ill Patients With COVID-19 Pneumonia in Lombardy, Italy

    Get PDF
    IMPORTANCE Data on the association of COVID-19 vaccination with intensive care unit (ICU) admission and outcomes of patients with SARS-CoV-2-related pneumonia are scarce. OBJECTIVE To evaluate whether COVID-19 vaccination is associated with preventing ICU admission for COVID-19 pneumonia and to compare baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study on regional data sets reports: (1) daily number of administered vaccines and (2) data of all consecutive patients admitted to an ICU in Lombardy, Italy, from August 1 to December 15, 2021 (Delta variant predominant). Vaccinated patients received either mRNA vaccines (BNT162b2 or mRNA-1273) or adenoviral vector vaccines (ChAdOx1-S or Ad26.COV2). Incident rate ratios (IRRs) were computed from August 1, 2021, to January 31, 2022; ICU and baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU were analyzed from August 1 to December 15, 2021. EXPOSURES COVID-19 vaccination status (no vaccination, mRNA vaccine, adenoviral vector vaccine). MAIN OUTCOMES AND MEASURES The incidence IRR of ICU admission was evaluated, comparing vaccinated people with unvaccinated, adjusted for age and sex. The baseline characteristics at ICU admission of vaccinated and unvaccinated patients were investigated. The association between vaccination status at ICU admission and mortality at ICU and hospital discharge were also studied, adjusting for possible confounders. RESULTS Among the 10 107 674 inhabitants of Lombardy, Italy, at the time of this study, the median [IQR] agewas 48 [28-64] years and 5 154 914 (51.0%) were female. Of the 7 863 417 individuals who were vaccinated (median [IQR] age: 53 [33-68] years; 4 010 343 [51.4%] female), 6 251 417 (79.5%) received an mRNA vaccine, 550 439 (7.0%) received an adenoviral vector vaccine, and 1 061 561 (13.5%) received a mix of vaccines and 4 497 875 (57.2%) were boosted. Compared with unvaccinated people, IRR of individuals who received an mRNA vaccine within 120 days from the last dosewas 0.03 (95% CI, 0.03-0.04; P <.001), whereas IRR of individuals who received an adenoviral vector vaccine after 120 days was 0.21 (95% CI, 0.19-0.24; P <.001). There were 553 patients admitted to an ICU for COVID-19 pneumonia during the study period: 139 patients (25.1%) were vaccinated and 414 (74.9%) were unvaccinated. Compared with unvaccinated patients, vaccinated patients were older (median [IQR]: 72 [66-76] vs 60 [51-69] years; P <.001), primarily male individuals (110 patients [ 79.1%] vs 252 patients [60.9%]; P <.001), with more comorbidities (median [IQR]: 2 [1-3] vs 0 [0-1] comorbidities; P <.001) and had higher ratio of arterial partial pressure of oxygen (PaO2) and fraction of inspiratory oxygen (FiO(2)) at ICU admission (median [IQR]: 138 [100-180] vs 120 [90-158] mm Hg; P =.007). Factors associated with ICU and hospital mortality were higher age, premorbid heart disease, lower PaO2/FiO(2) at ICU admission, and female sex (this factor only for ICU mortality). ICU and hospital mortality were similar between vaccinated and unvaccinated patients. CONCLUSIONS AND RELEVANCE In this cohort study, mRNA and adenoviral vector vaccines were associated with significantly lower risk of ICU admission for COVID-19 pneumonia. ICU and hospital mortality were not associated with vaccinated status.These findings suggest a substantial reduction of the risk of developing COVID-19-related severe acute respiratory failure requiring ICU admission among vaccinated people

    Time course of risk factors associated with mortality of 1260 critically ill patients with COVID-19 admitted to 24 Italian intensive care units

    Get PDF
    Purpose: To evaluate the daily values and trends over time of relevant clinical, ventilatory and laboratory parameters during the intensive care unit (ICU) stay and their association with outcome in critically ill patients with coronavirus disease 19 (COVID-19). Methods: In this retrospective–prospective multicentric study, we enrolled COVID-19 patients admitted to Italian ICUs from February 22 to May 31, 2020. Clinical data were daily recorded. The time course of 18 clinical parameters was evaluated by a polynomial maximum likelihood multilevel linear regression model, while a full joint modeling was fit to study the association with ICU outcome. Results: 1260 consecutive critically ill patients with COVID-19 admitted in 24 ICUs were enrolled. 78% were male with a median age of 63 [55–69] years. At ICU admission, the median ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) was 122 [89–175] mmHg. 79% of patients underwent invasive mechanical ventilation. The overall mortality was 34%. Both the daily values and trends of respiratory system compliance, PaO2/FiO2, driving pressure, arterial carbon dioxide partial pressure, creatinine, C-reactive protein, ferritin, neutrophil, neutrophil–lymphocyte ratio, and platelets were associated with survival, while for lactate, pH, bilirubin, lymphocyte, and urea only the daily values were associated with survival. The trends of PaO2/FiO2, respiratory system compliance, driving pressure, creatinine, ferritin, and C-reactive protein showed a higher association with survival compared to the daily values. Conclusion: Daily values or trends over time of parameters associated with acute organ dysfunction, acid–base derangement, coagulation impairment, or systemic inflammation were associated with patient survival

    Reply to Agrafiotis

    No full text
    corecore