81 research outputs found

    Hematology: the specialty with a record number of new approvals

    Get PDF

    Complement in Thrombotic Microangiopathies: Unraveling Ariadne's Thread Into the Labyrinth of Complement Therapeutics

    Get PDF
    Thrombotic microangiopathies (TMAs) are a heterogeneous group of syndromes presenting with a distinct clinical triad: microangiopathic hemolytic anemia, thrombocytopenia, and organ damage. We currently recognize two major entities with distinct pathophysiology: thrombotic thrombocytopenic purpura (TTP) and hemolytic uremic syndrome (HUS). Beyond them, differential diagnosis also includes TMAs associated with underlying conditions, such as drugs, malignancy, infections, scleroderma-associated renal crisis, systemic lupus erythematosus (SLE), malignant hypertension, transplantation, HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets), and disseminated intravascular coagulation (DIC). Since clinical presentation alone is not sufficient to differentiate between these entities, robust pathophysiological features need to be used for early diagnosis and appropriate treatment. Over the last decades, our understanding of the complement system has evolved rapidly leading to the characterization of diseases which are fueled by complement dysregulation. Among TMAs, complement-mediated HUS (CM-HUS) has long served as a disease model, in which mutations of complement-related genes represent the first hit of the disease and complement inhibition is an effective and safe strategy. Based on this knowledge, clinical conditions resembling CM-HUS in terms of phenotype and genotype have been recognized. As a result, the role of complement in TMAs is rapidly expanding in recent years based on genetic and functional studies. Herein we provide an updated overview of key pathophysiological processes underpinning complement activation and dysregulation in TMAs. We also discuss emerging clinical challenges in streamlining diagnostic algorithms and stratifying TMA patients that could benefit more from complement modulation. With the advent of next-generation complement therapeutics and suitable disease models, these translational perspectives could guide a more comprehensive, disease- and target-tailored complement intervention in these disorders

    Role of the lectin pathway of complement in hematopoietic stem cell transplantation-associated endothelial injury and thrombotic microangiopathy.

    Get PDF
    Hematopoietic stem cell transplantation-associated thrombotic microangiopathy (HSCT-TMA) is a life-threatening syndrome that occurs in adult and pediatric patients after hematopoietic stem cell transplantation. Nonspecific symptoms, heterogeneity within study populations, and variability among current diagnostic criteria contribute to misdiagnosis and underdiagnosis of this syndrome. Hematopoietic stem cell transplantation and associated risk factors precipitate endothelial injury, leading to HSCT-TMA and other endothelial injury syndromes such as hepatic veno-occlusive disease/sinusoidal obstruction syndrome, idiopathic pneumonia syndrome, diffuse alveolar hemorrhage, capillary leak syndrome, and graft-versus-host disease. Endothelial injury can trigger activation of the complement system, promoting inflammation and the development of endothelial injury syndromes, ultimately leading to organ damage and failure. In particular, the lectin pathway of complement is activated by damage-associated molecular patterns (DAMPs) on the surface of injured endothelial cells. Pattern-recognition molecules such as mannose-binding lectin (MBL), collectins, and ficolins-collectively termed lectins-bind to DAMPs on injured host cells, forming activation complexes with MBL-associated serine proteases 1, 2, and 3 (MASP-1, MASP-2, and MASP-3). Activation of the lectin pathway may also trigger the coagulation cascade via MASP-2 cleavage of prothrombin to thrombin. Together, activation of complement and the coagulation cascade lead to a procoagulant state that may result in development of HSCT-TMA. Several complement inhibitors targeting various complement pathways are in clinical trials for the treatment of HSCT-TMA. In this article, we review the role of the complement system in HSCT-TMA pathogenesis, with a focus on the lectin pathway

    Small-molecule factor D inhibitors selectively block the alternative pathway of complement in paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome

    Get PDF
    Paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome are diseases of excess activation of the alternative pathway of complement that are treated with eculizumab, a humanized monoclonal antibody against the terminal complement component C5. Eculizumab must be administered intravenously, and moreover some patients with paroxysmal nocturnal hemoglobinuria on eculizumab have symptomatic extravascular hemolysis, indicating an unmet need for additional therapeutic approaches. We report the activity of two novel small-molecule inhibitors of the alternative pathway component Factor D using in vitro correlates of both paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Both compounds bind human Factor D with high affinity and effectively inhibit its proteolytic activity against purified Factor B in complex with C3b. When tested using the traditional Ham test with cells from paroxysmal nocturnal hemoglobinuria patients, the Factor D inhibitors significantly reduced complement-mediated hemolysis at concentrations as low as 0.01 μM. Additionally the compound ACH-4471 significantly decreased C3 fragment deposition on paroxysmal nocturnal hemoglobinuria erythrocytes, indicating a reduced potential relative to eculizumab for extravascular hemolysis. Using the recently described modified Ham test with serum from patients with atypical hemolytic uremic syndrome, the compounds reduced the alternative pathway-mediated killing of PIGA-null reagent cells, thus establishing their potential utility for this disease of alternative pathway of complement dysregulation and validating the modified Ham test as a system for pre-clinical drug development for atypical hemolytic uremic syndrome. Finally, ACH-4471 blocked alternative pathway activity when administered orally to cynomolgus monkeys. In conclusion, the small-molecule Factor D inhibitors show potential as oral therapeutics for human diseases driven by the alternative pathway of complement, including paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome

    Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks

    Get PDF
    There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.- Pfizer Pharmaceuticals(undefined

    MOLNUPIRAVIR COMPARED TO NIRMATRELVIR/RITONAVIR FOR COVID-19 IN HIGH-RISK PATIENTS WITH HAEMATOLOGICAL MALIGNANCY IN EUROPE. A MATCHED-PAIRED ANALYSIS FROM THE EPICOVIDEHA REGISTRY

    Get PDF
    Introduction: Molnupiravir and nirmatrelvir/ritonavir are antivirals used to prevent progression to severe SARS-CoV-2 infections, which reduce both hospitalization and mortality rates. Nirmatrelvir/ritonavir was authorised in Europe in December 2021, while molnupiravir is not yet licensed in Europe as of February 2022. Molnupiravir may be an alternative to nirmatrelvir/ritonavir, because it displays less frequent drug-drug interactions and contraindications. A caveat connected to molnupiravir derives from the mode of action inducing viral mutations. In clinical trials on patients without haematological malignancy, mortality rate reduction of molnupiravir appeared less pronounced than that of nirmatrelvir/ritonavir. Little is known about the comparative efficacy of the two drugs in patients with haematological malignancy at high-risk of severe COVID-19. Thus, we here assess the effectiveness of molnupiravir compared to nirmatrelvir/ritonavir in our cohort of patients with haematological malignancies. Methods: Clinical data of patients treated either with molnupiravir or nirmatrelvir/ritonavir monotherapy for COVID-19 were retrieved from the EPICOVIDEHA registry. Patients treated with molnupiravir were matched by sex, age (±10 years), and baseline haematological malignancy severity to controls treated with nirmatrelvir/ritonavir. Results: A total of 116 patients receiving molnupiravir for the clinical management of COVID-19 were matched to an equal number of controls receiving nirmatrelvir/ritonavir. In each of the groups, 68 (59%) patients were male; with a median age of 64 years (IQR 53-74) for molnupiravir recipients and 64 years (IQR 54-73) for nirmatrelvir/ritonavir recipients; 57% (n=66) of the patients had controlled baseline haematological malignancy, 13% (n=15) stable, and 30% (n=35) had active disease at COVID-19 onset in each of the groups. During COVID-19 infection, one third of patients from each group were admitted to hospital. Although a similar proportion of vaccinated patients was observed in both groups (molnupiravir n=77, 66% vs nirmatrelvir/ritonavir n=87, 75%), those treated with nirmatrelvir/ritonavir had more often received four doses (n=27, 23%) as compared to patients treated with molnupiravir (n=5, 4%, p<0.001). No differences were detected in COVID-19 severity (p=0.39) or hospitalization (p=1.0). No statistically significant differences were identified in overall mortality rate (p=0.78) or in survival probability (d30 p=0.19, d60 p=0.67, d90 p=0.68, last day of follow up p=0.68). In all patients, deaths were either attributed to COVID-19 or the infection contributed to death as per treating physician's judgement. Conclusions: In high-risk patients with haematological malignancies and COVID-19, molnupiravir showed rates of hospitalization and mortality comparable to those of nirmatrelvir/ritonavir in this matched-pair analysis. Molnupiravir appears to be a plausible alternative to nirmatrelvir/ritonavir for COVID-19 treatment in patients with haematological malignancy

    ECP versus ruxolitinib in steroid-refractory acute GVHD – a retrospective study by the EBMT transplant complications working party

    Get PDF
    IntroductionExtracorporal Photophoresis (ECP) is in clinical use for steroid-refractory and steroid-dependent acute GVHD (SR-aGVHD). Based on recent Phase-III study results, ruxolitinib has become the new standard of care for SR-aGVHD. Our aim was to collect comparative data between ruxolitinib and ECP in SR-aGVHD in order to improve the evidence base for clinical decision making. MethodsWe asked EBMT centers if they were willing to participate in this study by completing a data form (Med-C) with detailed information on GVHD grading, -therapy, -dosing, -response and complications for each included patient.Results31 centers responded positively (14%) and we included all patients receiving alloSCT between 1/2017-7/2019 and treated with ECP or ruxolitinib for SR-aGVHD grades II-IV from these centers. We identified 53 and 40 patients with grades II-IV SR-aGVHD who were treated with ECP and ruxolitinib, respectively. We performed multivariate analyses adjusted on grading and type of SR-aGVHD (steroid dependent vs. refractory). At day+90 after initiation of treatment for SR-aGVHD we found no statistically significant differences in overall response. The odds ratio in the ruxolitinib group to achieve overall response vs. the ECP group was 1.13 (95% CI = [0.41; 3.22], p = 0.81). In line, we detected no statistically significant differences in overall survival, progression-free survival, non-relapse mortality and relapse incidence.DiscussionThe clinical significance is limited by the retrospective study design and the current data can’t replace prospective studies on ECP in SR-aGVHD. However, the present results contribute to the accumulating evidence on ECP as an effective treatment option in SR-aGVHD
    corecore