5 research outputs found

    Π€Π˜Π—Π˜Π§Π•Π‘ΠšΠ˜Π• Π₯ΠΠ ΠΠšΠ’Π•Π Π˜Π‘Π’Π˜ΠšΠ˜ ΠšΠΠ—Π•Π˜ΠΠ ПРИ ΠžΠ‘Π ΠΠ‘ΠžΠ’ΠšΠ• Π’Π«Π‘ΠžΠšΠ˜Πœ Π”ΠΠ’Π›Π•ΠΠ˜Π•Πœ Π’ Π ΠΠ‘Π’Π’ΠžΠ Π•

    Get PDF
    The aim of this work was to study the effect of pressure (50; 90; 160; 250; 350 MPa) on a physical property of casein micelle: hydrodynamic radius, tyrosine and tryptophan fluorescence and IR spectra characteristics. According to photon-correlation spectroscopy, the average hydrodynamic radius of the casein micelle was 128 nm, increasing at 50 MPa to 467 nm with the formation of conglomerates. Further increase of pressure led to the formation of two fractions of particles, differing in hydrodynamic radius. At a pressure of 350 MPa, an average radius of 75 % of particles was 121 nm. Comparison of hydrodynamic radius and tyrosine fluorescence revealed a decrease in the intensity of the glow with an increase in the proportion of large particles and an increase in the radiation in the solution with a decrease of the micelles size. The increase of casein fluorescence by tryptophan and its decrease by tyrosine indicate a change in the conformation of protein molecules during pressure treatment. FTIR spectroscopy revealed a change in the intensity of the optical density in the range of amide I, amide II and valence bonds of tyrosine, confirming the absence of new bonds. The obtained physical data indicate a change in the structure of casein micelles with an increase in the proportion (25 %) of large particles after the action of high pressure (350mpa), which should be taken into account in milk processing. The fluorescence of casein during pressure treatment is a poorly investigated physical indicator and can be important for the processing of raw milk.ЦСлью Π΄Π°Π½Π½ΠΎΠ³ΠΎ исслСдования Π±Ρ‹Π»ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния воздСйствия давлСния (50; 90; 160; 250; 350 МПа) Π½Π° ряд физичСских свойств ΠΌΠΈΡ†Π΅Π»Π»Ρ‹ ΠΊΠ°Π·Π΅ΠΈΠ½Π°: гидродинамичСский радиус, Ρ„Π»ΡŽΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡŽ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½Π° ΠΈ Ρ‚Ρ€ΠΈΠΏΡ‚ΠΎΡ„Π°Π½Π° ΠΈ характСристику ИК-спСктров. По Π΄Π°Π½Π½Ρ‹ΠΌ Ρ„ΠΎΡ‚ΠΎΠ½Π½ΠΎ-коррСляционной спСктроскопии срСдний гидродинамичСский радиус ΠΌΠΈΡ†Π΅Π»Π»Ρ‹ ΠΊΠ°Π·Π΅ΠΈΠ½Π° составил 128 Π½ΠΌ, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡΡΡŒ ΠΏΡ€ΠΈ 50 МПа Π΄ΠΎ 467 Π½ΠΌ с ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Π³Π»ΠΎΠΌΠ΅Ρ€Π°Ρ‚ΠΎΠ². Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅Π΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ давлСния ΠΏΡ€ΠΈΠ²Π΅Π»ΠΎ ΠΊ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ Π΄Π²ΡƒΡ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ частиц, Ρ€Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ гидродинамичСского радиуса. ΠŸΡ€ΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ Π² 350 МПа ΠΎΡΠ½ΠΎΠ²Π½ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ (75 %) составляли частицы со срСдним радиусом 121 Π½ΠΌ. БопоставлСниС гистограмм гидродинамичСского радиуса ΠΈ флуорСсцСнции Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½Π° ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ»ΠΎ сниТСниС интСнсивности свСчСния ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Π΄ΠΎΠ»ΠΈ частиц Π±ΠΎΠ»ΡŒΡˆΠΈΡ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² ΠΈ рост излучСния Π² растворС ΠΏΡ€ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° ΠΌΠΈΡ†Π΅Π»Π». Рост флуорСсцСнции ΠΊΠ°Π·Π΅ΠΈΠ½Π° ΠΏΠΎ Ρ‚Ρ€ΠΈΠΏΡ‚ΠΎΡ„Π°Π½Ρƒ ΠΈ Π΅Ρ‘ сниТСниС ΠΏΠΎ Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½Ρƒ ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ. ИК-Π€ΡƒΡ€ΡŒΠ΅ спСктроскопия выявила ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ интСнсивности оптичСской плотности Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π°ΠΌΠΈΠ΄ I, Π°ΠΌΠΈΠ΄ II ΠΈ Π²Π°Π»Π΅Π½Ρ‚Π½Ρ‹Ρ… связСй Ρ‚ΠΈΡ€ΠΎΠ·ΠΈΠ½Π°, подтвСрТдая отсутствиС появлСния Π½ΠΎΠ²Ρ‹Ρ… связСй.ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ физичСскиС Π΄Π°Π½Π½Ρ‹Π΅ ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ структуры ΠΊΠ°Π·Π΅ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΌΠΈΡ†Π΅Π»Π» с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π΄ΠΎΠ»ΠΈ (25 %) ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… частиц послС дСйствия высокого давлСния (350МПа), Ρ‡Ρ‚ΠΎ слСдуСт ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ Π² ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΌΠΎΠ»ΠΎΠΊΠ°. Π€Π»ΡŽΠΎΡ€Π΅ΡΡ†Π΅Π½Ρ†ΠΈΡ ΠΊΠ°Π·Π΅ΠΈΠ½Π° ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ являСтся слабо исслСдованным физичСским ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ нСсти ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для тСхнологичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΡΡ‹Ρ€ΡŒΡ

    A Review of Evidence for the Involvement of the Circadian Clock Genes into Malignant Transformation of Thyroid Tissue

    No full text
    (1) Background: In 2013, the results of a pioneer study on abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in cancerous thyroid nodules was published. In the following years, new findings suggesting the involvement of circadian clockwork dysfunction into malignant transformation of thyroid tissue were gradually accumulating. This systematic review provides an update on existing evidence regarding the association of these genes with thyroid tumorigenesis. (2) Methods: Two bibliographic databases (Scopus and PubMed) were searched for articles from inception to 20 March 2023. The reference lists of previously published (nonsystematic) reviews were also hand-searched for additional relevant studies. (3) Results: Nine studies published between 2013 and 2022 were selected. In total, 9 of 12 tested genes were found to be either up- or downregulated. The list of such genes includes all families of core circadian clock genes that are the key components of three transcriptional–translational feedback loops of the circadian clock mechanism (BMAL1, CLOCK, NPAS2, RORΞ±, REV-ERBΞ±, PERs, CRYs, and DECs). (4) Conclusions: Examination of abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in thyroid tissue can help to reduce the rate of inadequate differential preoperative diagnosis for thyroid carcinoma

    The Irrecoverable Loss in Sleep on Weekdays of Two Distinct Chronotypes Can Be Equalized by Permitting a >2 h Difference in Waking Time

    No full text
    Background: Our work/study culture is biased towards the circadian clocks of β€œmorning types”, whereas β€œevening types” are forced to advance their weekday waking times relative to weekend waking times. Since the experimental research consistently reveals a >2 h difference between these two chronotypes in the positions of their endogenous circadian phases, we hypothesized the necessity to permit a >2 h difference between them in weekday waking times to equalize their irrecoverable loss in sleep on weekdays. Methods: A total of 659 and 1106 participants of online surveys identified themselves as morning and evening types, respectively. The hypothesis was tested by applying a model of sleep–wake regulation for simulating sleep times reported by 245 lecturers of these two types, and by comparison of sleep times of these types among these lecturers and 1520 students. Results: The hypothesis was supported by results showing that, if, on weekdays, an β€œaverage” morning type wakes at 6 a.m., the equalization of the weekday sleep loss of the two chronotypes would require the waking time of an β€œaverage” evening type to be no earlier than 8 a.m. Conclusions: These results may be implemented in a model-based methodology for the correction of weekday waking times to equalize weekday sleep loss
    corecore