5 research outputs found
Π€ΠΠΠΠ§ΠΠ‘ΠΠΠ Π₯ΠΠ ΠΠΠ’ΠΠ ΠΠ‘Π’ΠΠΠ ΠΠΠΠΠΠΠ ΠΠ Π ΠΠΠ ΠΠΠΠ’ΠΠ ΠΠ«Π‘ΠΠΠΠ ΠΠΠΠΠΠΠΠΠ Π Π ΠΠ‘Π’ΠΠΠ Π
The aim of this work was to study the effect of pressure (50; 90; 160; 250; 350 MPa) on a physical property of casein micelle: hydrodynamic radius, tyrosine and tryptophan fluorescence and IR spectra characteristics. According to photon-correlation spectroscopy, the average hydrodynamic radius of the casein micelle was 128 nm, increasing at 50 MPa to 467 nm with the formation of conglomerates. Further increase of pressure led to the formation of two fractions of particles, differing in hydrodynamic radius. At a pressure of 350 MPa, an average radius of 75 % of particles was 121 nm. Comparison of hydrodynamic radius and tyrosine fluorescence revealed a decrease in the intensity of the glow with an increase in the proportion of large particles and an increase in the radiation in the solution with a decrease of the micelles size. The increase of casein fluorescence by tryptophan and its decrease by tyrosine indicate a change in the conformation of protein molecules during pressure treatment. FTIR spectroscopy revealed a change in the intensity of the optical density in the range of amide I, amide II and valence bonds of tyrosine, confirming the absence of new bonds. The obtained physical data indicate a change in the structure of casein micelles with an increase in the proportion (25 %) of large particles after the action of high pressure (350mpa), which should be taken into account in milk processing. The fluorescence of casein during pressure treatment is a poorly investigated physical indicator and can be important for the processing of raw milk.Π¦Π΅Π»ΡΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π±ΡΠ»ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π΄Π°Π²Π»Π΅Π½ΠΈΡ (50; 90; 160; 250; 350 ΠΠΠ°) Π½Π° ΡΡΠ΄ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ² ΠΌΠΈΡΠ΅Π»Π»Ρ ΠΊΠ°Π·Π΅ΠΈΠ½Π°: Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ°Π΄ΠΈΡΡ, ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΡ ΡΠΈΡΠΎΠ·ΠΈΠ½Π° ΠΈ ΡΡΠΈΠΏΡΠΎΡΠ°Π½Π° ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΡ ΠΠ-ΡΠΏΠ΅ΠΊΡΡΠΎΠ². ΠΠΎ Π΄Π°Π½Π½ΡΠΌ ΡΠΎΡΠΎΠ½Π½ΠΎ-ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΡΡΠ΅Π΄Π½ΠΈΠΉ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ°Π΄ΠΈΡΡ ΠΌΠΈΡΠ΅Π»Π»Ρ ΠΊΠ°Π·Π΅ΠΈΠ½Π° ΡΠΎΡΡΠ°Π²ΠΈΠ» 128 Π½ΠΌ, ΡΠ²Π΅Π»ΠΈΡΠΈΠ²Π°ΡΡΡ ΠΏΡΠΈ 50 ΠΠΠ° Π΄ΠΎ 467 Π½ΠΌ Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Π³Π»ΠΎΠΌΠ΅ΡΠ°ΡΠΎΠ². ΠΠ°Π»ΡΠ½Π΅ΠΉΡΠ΅Π΅ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΡ ΠΏΡΠΈΠ²Π΅Π»ΠΎ ΠΊ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄Π²ΡΡ
ΡΡΠ°ΠΊΡΠΈΠΉ ΡΠ°ΡΡΠΈΡ, ΡΠ°Π·Π»ΠΈΡΠ°ΡΡΠΈΡ
ΡΡ ΠΏΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΡΡΠ°. ΠΡΠΈ Π΄Π°Π²Π»Π΅Π½ΠΈΠΈ Π² 350 ΠΠΠ° ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠ°ΡΡΡ (75 %) ΡΠΎΡΡΠ°Π²Π»ΡΠ»ΠΈ ΡΠ°ΡΡΠΈΡΡ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ ΡΠ°Π΄ΠΈΡΡΠΎΠΌ 121 Π½ΠΌ. Π‘ΠΎΠΏΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π³ΠΈΡΡΠΎΠ³ΡΠ°ΠΌΠΌ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΡΡΠ° ΠΈ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ ΡΠΈΡΠΎΠ·ΠΈΠ½Π° ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ»ΠΎ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ²Π΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΈ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠΈ Π΄ΠΎΠ»ΠΈ ΡΠ°ΡΡΠΈΡ Π±ΠΎΠ»ΡΡΠΈΡ
ΡΠ°Π·ΠΌΠ΅ΡΠΎΠ² ΠΈ ΡΠΎΡΡ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ Π² ΡΠ°ΡΡΠ²ΠΎΡΠ΅ ΠΏΡΠΈ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΠΈ ΡΠ°Π·ΠΌΠ΅ΡΠ° ΠΌΠΈΡΠ΅Π»Π». Π ΠΎΡΡ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ ΠΊΠ°Π·Π΅ΠΈΠ½Π° ΠΏΠΎ ΡΡΠΈΠΏΡΠΎΡΠ°Π½Ρ ΠΈ Π΅Ρ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΡΠΈΡΠΎΠ·ΠΈΠ½Ρ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΡΡ
ΠΌΠΎΠ»Π΅ΠΊΡΠ» ΠΏΡΠΈ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ. ΠΠ-Π€ΡΡΡΠ΅ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡ Π²ΡΡΠ²ΠΈΠ»Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π°ΠΌΠΈΠ΄ I, Π°ΠΌΠΈΠ΄ II ΠΈ Π²Π°Π»Π΅Π½ΡΠ½ΡΡ
ΡΠ²ΡΠ·Π΅ΠΉ ΡΠΈΡΠΎΠ·ΠΈΠ½Π°, ΠΏΠΎΠ΄ΡΠ²Π΅ΡΠΆΠ΄Π°Ρ ΠΎΡΡΡΡΡΡΠ²ΠΈΠ΅ ΠΏΠΎΡΠ²Π»Π΅Π½ΠΈΡ Π½ΠΎΠ²ΡΡ
ΡΠ²ΡΠ·Π΅ΠΉ.ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΊΠ°Π·ΡΠ²Π°ΡΡ Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΡΡΡΠΊΡΡΡΡ ΠΊΠ°Π·Π΅ΠΈΠ½ΠΎΠ²ΡΡ
ΠΌΠΈΡΠ΅Π»Π» Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ Π΄ΠΎΠ»ΠΈ (25 %) ΠΊΡΡΠΏΠ½ΡΡ
ΡΠ°ΡΡΠΈΡ ΠΏΠΎΡΠ»Π΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π²ΡΡΠΎΠΊΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ (350ΠΠΠ°), ΡΡΠΎ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΡΠΈΡΡΠ²Π°ΡΡ Π² ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠΎΠ»ΠΎΠΊΠ°. Π€Π»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΡ ΠΊΠ°Π·Π΅ΠΈΠ½Π° ΠΏΡΠΈ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»Π°Π±ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π½ΡΠΌ ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ ΠΈ ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ΡΡΠΈ ΠΏΡΠΈΠΊΠ»Π°Π΄Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄Π»Ρ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΠΌΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡΡ
A Review of Evidence for the Involvement of the Circadian Clock Genes into Malignant Transformation of Thyroid Tissue
(1) Background: In 2013, the results of a pioneer study on abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in cancerous thyroid nodules was published. In the following years, new findings suggesting the involvement of circadian clockwork dysfunction into malignant transformation of thyroid tissue were gradually accumulating. This systematic review provides an update on existing evidence regarding the association of these genes with thyroid tumorigenesis. (2) Methods: Two bibliographic databases (Scopus and PubMed) were searched for articles from inception to 20 March 2023. The reference lists of previously published (nonsystematic) reviews were also hand-searched for additional relevant studies. (3) Results: Nine studies published between 2013 and 2022 were selected. In total, 9 of 12 tested genes were found to be either up- or downregulated. The list of such genes includes all families of core circadian clock genes that are the key components of three transcriptionalβtranslational feedback loops of the circadian clock mechanism (BMAL1, CLOCK, NPAS2, RORΞ±, REV-ERBΞ±, PERs, CRYs, and DECs). (4) Conclusions: Examination of abnormalities in the levels and circadian rhythmicity of expression of circadian clock genes in thyroid tissue can help to reduce the rate of inadequate differential preoperative diagnosis for thyroid carcinoma
The Irrecoverable Loss in Sleep on Weekdays of Two Distinct Chronotypes Can Be Equalized by Permitting a >2 h Difference in Waking Time
Background: Our work/study culture is biased towards the circadian clocks of βmorning typesβ, whereas βevening typesβ are forced to advance their weekday waking times relative to weekend waking times. Since the experimental research consistently reveals a >2 h difference between these two chronotypes in the positions of their endogenous circadian phases, we hypothesized the necessity to permit a >2 h difference between them in weekday waking times to equalize their irrecoverable loss in sleep on weekdays. Methods: A total of 659 and 1106 participants of online surveys identified themselves as morning and evening types, respectively. The hypothesis was tested by applying a model of sleepβwake regulation for simulating sleep times reported by 245 lecturers of these two types, and by comparison of sleep times of these types among these lecturers and 1520 students. Results: The hypothesis was supported by results showing that, if, on weekdays, an βaverageβ morning type wakes at 6 a.m., the equalization of the weekday sleep loss of the two chronotypes would require the waking time of an βaverageβ evening type to be no earlier than 8 a.m. Conclusions: These results may be implemented in a model-based methodology for the correction of weekday waking times to equalize weekday sleep loss