7 research outputs found

    Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia

    Full text link
    X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4–dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8–207.8, P < 0.001). The patients’ susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia

    The CXCL12Îł Chemokine Displays Unprecedented Structural and Functional Properties that Make It a Paradigm of Chemoattractant Proteins

    Get PDF
    The CXCL12Îł chemokine arises by alternative splicing from Cxcl12, an essential gene during development. This protein binds CXCR4 and displays an exceptional degree of conservation (99%) in mammals. CXCL12Îł is formed by a protein core shared by all CXCL12 isoforms, extended by a highly cationic carboxy-terminal (C-ter) domain that encompass four overlapped BBXB heparan sulfate (HS)-binding motifs. We hypothesize that this unusual domain could critically determine the biological properties of CXCL12Îł through its interaction to, and regulation by extracellular glycosaminoglycans (GAG) and HS in particular. By both RT-PCR and immunohistochemistry, we mapped the localization of CXCL12Îł both in mouse and human tissues, where it showed discrete differential expression. As an unprecedented feature among chemokines, the secreted CXCL12Îł strongly interacted with cell membrane GAG, thus remaining mostly adsorbed on the plasmatic membrane upon secretion. Affinity chromatography and surface plasmon resonance allowed us to determine for CXCL12Îł one of the higher affinity for HS (Kd = 0.9 nM) ever reported for a protein. This property relies in the presence of four canonical HS-binding sites located at the C-ter domain but requires the collaboration of a HS-binding site located in the core of the protein. Interestingly, and despite reduced agonist potency on CXCR4, the sustained binding of CXCL12Îł to HS enabled it to promote in vivo intraperitoneal leukocyte accumulation and angiogenesis in matrigel plugs with much higher efficiency than CXCL12α. In good agreement, mutant CXCL12Îł chemokines selectively devoid of HS-binding capacity failed to promote in vivo significant cell recruitment. We conclude that CXCL12Îł features unique structural and functional properties among chemokines which rely on the presence of a distinctive C-ter domain. The unsurpassed capacity to bind to HS on the extracellular matrix would make CXCL12Îł the paradigm of haptotactic proteins, which regulate essential homeostatic functions by promoting directional migration and selective tissue homing of cells

    Diagnosis features of pediatric Gaucher disease patients in the era of enzymatic therapy, a national-base study from the Spanish Registry of Gaucher Disease

    No full text
    Abstract Background The enzymatic replacement therapy (ERT) availability for Gaucher disease (GD) has changed the landscape of the disease, several countries have screening programs. These actions have promoted the early diagnosis and avoided many complications in pediatric patients. In Spain ERT has been available since 1993 and 386 patients have been included in the Spanish Registry of Gaucher Disease (SpRGD). The aim of this study is to analyze the impact of ERT on the characteristics at time of diagnosis and initial complications in pediatric Gaucher disease patients. Aim To analyze the impact of ERT on the characteristics at time of diagnosis and initial complications in pediatric Gaucher disease patients. Methods A review of data in SpRGD from patients’ diagnosed before 18 years old was performed. The cohort was split according the year of diagnosis (≀1994, cohort A; ≄1995, cohort B). Results A total of 98 pediatric patients were included, GD1: 80, GD3: 18; mean age: 7.2 (0.17–16.5) years, 58 (59.2%) males and 40 (40.8%) females. Forty-five were diagnosed ≀ 1994 and 53 ≄ 1995. Genotype: N370S/N370S: 2 (2.0%), N370S/L444P: 27 (27.5%), N370S/other: 47 (48%), L444P/L444P: 7 (7.1%), L444P/D409H: 2 (2.0%), L444P/other: 3 (6.2%), other/other: 10 (10.2%). The mean age at diagnosis was earlier in patients diagnosed after 1995 (p < 0.001) and different between the subtypes, GD1: 8.2 (0.2–16.5) years and GD3: 2.8 (0.17–10.2) years (p < 0.001). There were more severe patients in the group diagnosed before 1994 (p = 0.045) carrying L444P (2), D409H (2), G377S (1), G195W (1) or the recombinant mutation. The patients’ diagnosed ≀1994 showed worse cytopenias, higher chance of bone vascular complications at diagnosis and previous spleen removal. The patients started ERT at a median time after diagnosis of 5.2 years [cohort A] and 1.6 years [cohort B] (p < 0.001). Conclusions The early diagnosis of Gaucher disease in the era of ERT availability has permitted to reduce the incidence of severe and irreversible initial complication in pediatric patients, and this has permitted better development of these patients. This is the largest pediatric cohort from a national registry

    Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia

    No full text
    X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4-dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8-207.8, P &lt; 0.001). The patients' susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia.MyD88- and IRAK-4-deficient patients have a higher risk of hypoxemic COVID-19 pneumonia than individuals of similar age in the general population, due to impaired TLR7-dependent type I IFN production

    Humans with inherited MyD88 and IRAK-4 deficiencies are predisposed to hypoxemic COVID-19 pneumonia

    No full text
    X-linked recessive deficiency of TLR7, a MyD88- and IRAK-4–dependent endosomal ssRNA sensor, impairs SARS-CoV-2 recognition and type I IFN production in plasmacytoid dendritic cells (pDCs), thereby underlying hypoxemic COVID-19 pneumonia with high penetrance. We report 22 unvaccinated patients with autosomal recessive MyD88 or IRAK-4 deficiency infected with SARS-CoV-2 (mean age: 10.9 yr; 2 mo to 24 yr), originating from 17 kindreds from eight countries on three continents. 16 patients were hospitalized: six with moderate, four with severe, and six with critical pneumonia, one of whom died. The risk of hypoxemic pneumonia increased with age. The risk of invasive mechanical ventilation was also much greater than in age-matched controls from the general population (OR: 74.7, 95% CI: 26.8–207.8, P < 0.001). The patients’ susceptibility to SARS-CoV-2 can be attributed to impaired TLR7-dependent type I IFN production by pDCs, which do not sense SARS-CoV-2 correctly. Patients with inherited MyD88 or IRAK-4 deficiency were long thought to be selectively vulnerable to pyogenic bacteria, but also have a high risk of hypoxemic COVID-19 pneumonia
    corecore