48 research outputs found

    Functional Characterization of Two Variants at the Intron 6-Exon 7 Boundary of the KCNQ2 Potassium Channel Gene Causing Distinct Epileptic Phenotypes

    Get PDF
    Pathogenic variants in KCNQ2 encoding for Kv7.2 potassium channel subunits have been found in patients affected by widely diverging epileptic phenotypes, ranging from Self-Limiting Familial Neonatal Epilepsy (SLFNE) to severe Developmental and Epileptic Encephalopathy (DEE). Thus, understanding the pathogenic molecular mechanisms of KCNQ2 variants and their correlation with clinical phenotypes has a relevant impact on the clinical management of these patients. In the present study, the genetic, biochemical, and functional effects prompted by two variants, each found in a non-familial SLNE or a DEE patient but both affecting nucleotides at the KCNQ2 intron 6-exon 7 boundary, have been investigated to test whether and how they affected the splicing process and to clarify whether such mechanism might play a pathogenetic role in these patients. Analysis of KCNQ2 mRNA splicing in patient-derived lymphoblasts revealed that the SLNE-causing intronic variant (c.928-1G > C) impeded the use of the natural splice site, but lead to a 10-aa Kv7.2 in frame deletion (Kv7.2 p.G310Δ10); by contrast, the DEE-causing exonic variant (c.928G > A) only had subtle effects on the splicing process at this site, thus leading to the synthesis of a full-length subunit carrying the G310S missense variant (Kv7.2 p.G310S). Patch-clamp recordings in transiently-transfected CHO cells and primary neurons revealed that both variants fully impeded Kv7.2 channel function, and exerted strong dominant-negative effects when co-expressed with Kv7.2 and/or Kv7.3 subunits. Notably, Kv7.2 p.G310S, but not Kv7.2 p.G310Δ10, currents were recovered upon overexpression of the PIP2-synthesizing enzyme PIP5K, and/or CaM; moreover, currents from heteromeric Kv7.2/Kv7.3 channels incorporating either Kv7.2 mutant subunits were differentially regulated by changes in PIP2 availability, with Kv7.2/Kv7.2 G310S/Kv7.3 currents showing a greater sensitivity to PIP2 depletion when compared to those from Kv7.2/Kv7.2 G310Δ10/Kv7.3 channels. Altogether, these results suggest that the two variants investigated differentially affected the splicing process at the intron 6-exon 7 boundary, and led to the synthesis of Kv7.2 subunits showing a differential sensitivity to PIP2 and CaM regulation; more studies are needed to clarify how such different functional properties contribute to the widely-divergent clinical phenotypes

    A novel de novo HCN1 loss-of-function mutation in genetic generalized epilepsy causing increased neuronal excitability

    Get PDF
    Abstract The causes of genetic epilepsies are unknown in the majority of patients. HCN ion channels have a widespread expression in neurons and increasing evidence demonstrates their functional involvement in human epilepsies. Among the four known isoforms, HCN1 is the most expressed in the neocortex and hippocampus and de novo HCN1 point mutations have been recently associated with early infantile epileptic encephalopathy. So far, HCN1 mutations have not been reported in patients with idiopathic epilepsy. Using a Next Generation Sequencing approach, we identified the de novo heterozygous p.Leu157Val (c.469C > G) novel mutation in HCN1 in an adult male patient affected by genetic generalized epilepsy (GGE), with normal cognitive development. Electrophysiological analysis in heterologous expression model (CHO cells) and in neurons revealed that L157V is a loss-of-function, dominant negative mutation causing reduced HCN1 contribution to net inward current and responsible for an increased neuronal firing rate and excitability, potentially predisposing to epilepsy. These data represent the first evidence that autosomal dominant missense mutations of HCN1 can also be involved in GGE, without the characteristics of epileptic encephalopathy reported previously. It will be important to include HCN1 screening in patients with GGE, in order to extend the knowledge of the genetic causes of idiopathic epilepsies, thus paving the way for the identification of innovative therapeutic strategies

    Efficacy of Anti-Inflammatory Therapy in a Model of Acute Seizures and in a Population of Pediatric Drug Resistant Epileptics

    Get PDF
    Targeting pro-inflammatory events to reduce seizures is gaining momentum. Experimentally, antagonism of inflammatory processes and of blood-brain barrier (BBB) damage has been demonstrated to be beneficial in reducing status epilepticus (SE). Clinically, a role of inflammation in the pathophysiology of drug resistant epilepsies is suspected. However, the use anti-inflammatory drug such as glucocorticosteroids (GCs) is limited to selected pediatric epileptic syndromes and spasms. Lack of animal data may be one of the reasons for the limited use of GCs in epilepsy. We evaluated the effect of the CG dexamethasone in reducing the onset and the severity of pilocarpine SE in rats. We assessed BBB integrity by measuring serum S100β and Evans Blue brain extravasation. Electrophysiological monitoring and hematologic measurements (WBCs and IL-1β) were performed. We reviewed the effect of add on dexamethasone treatment on a population of pediatric patients affected by drug resistant epilepsy. We excluded subjects affected by West, Landau-Kleffner or Lennox-Gastaut syndromes and Rasmussen encephalitis, known to respond to GCs or adrenocorticotropic hormone (ACTH). The effect of two additional GCs, methylprednisolone and hydrocortisone, was also reviewed in this population. When dexamethasone treatment preceded exposure to the convulsive agent pilocarpine, the number of rats developing status epilepticus (SE) was reduced. When SE developed, the time-to-onset was significantly delayed compared to pilocarpine alone and mortality associated with pilocarpine-SE was abolished. Dexamethasone significantly protected the BBB from damage. The clinical study included pediatric drug resistant epileptic subjects receiving add on GC treatments. Decreased seizure frequency (≥50%) or interruption of status epilepticus was observed in the majority of the subjects, regardless of the underlying pathology. Our experimental results point to a seizure-reducing effect of dexamethasone. The mechanism encompasses improvement of BBB integrity. Our results also suggest that add on GCs could be of efficacy in controlling pediatric drug resistant seizures

    CDKL5 deficiency disorder in males: Five new variants and review of the literature

    No full text
    The X-linked Cyclin-Dependent Kinase-Like 5 (CDKL5) gene encodes a serine-threonine kinase highly expressed in the developing brain. Loss of function of CDKL5 is pointed out to underlie the CDKL5 Deficiency Disorder (CDD), an X-linked dominant disease characterized by early-onset epileptic encephalopathy and developmental delay, usually affecting females more than males. To the best to our knowledge, only 45 males with CDD have been reported so far. Type and position of CDKL5 variants with different impact on the protein are reported to influence the clinical presentation. X-chromosome inactivation occurring in females and post-zygotic mosaicism in males are also believed to contribute to this variability. Based on these issues, genotype-phenotype correlations are still challenging. Here, we describe clinical features of five additional affected males with unreported CDKL5 variants, expanding the molecular spectrum of the disorder. We also reviewed the clinical profile of the previously reported 45 males with molecularly confirmed CDD. Severe developmental delay, cortical visual impairment, and early-onset refractory epilepsy characterize the CDD picture in males. By assessing the molecular spectrum, we confirm that germ-line truncating CDKL5 variants, equally distributed across the coding sequence, are the most recurrent mutations in CDD, and cause the worsen phenotype. While recurrence and relevance of missense substitutions within C-terminal remain still debated, disease-causing missense changes affecting the N-terminal catalytic domain correlate to a severe clinical phenotype. Finally, our data provide evidence that post-zygotic CDKL5 mosaicism may result in milder phenotypes and, at least in a subset of subjects, in variable response to antiepileptic treatments
    corecore