16 research outputs found

    Investigation of gene pool and genealogical links between sheep breeds of southern Russia by blood groups and DNA microsatellites

    Get PDF
    To study the gene pool and the establishment of genealogical relationships between breeds of sheep of different directions productivity bred in Russia, were used two classes of genetic markers - blood and DNA microsatellites. The included sample sheep are fine-wool Merino breeds: Grozny (GR), Caucasian (CA), Manychskij merino (MM), the Soviet Merino (SM), Stavropol (ST) and coarse wool breeds: Edilbaevskaya (ED), Karakul (CR) and Romanov (RO). For the study of erythrocyte, were selected antigens (blood group) in 1159 samples from 11 breeding farms. For microsatellite DNA study - 598 from 10 breeding farms. Microsatellite analysis revealed that the most polymorphic were Stavropol breed sheep that have identified an average of 18.27 alleles per locus were relatively conservative Romanov breed sheep - 9.7 alleles per locus. The minimum genetic distances established between Grozny and Soviet Merino - 0.0569 (for microsatellites) and 0.0741 (blood groups - later in the same sequence). The rocks of the Stavropol - Grozny were 0.0861 and 0, 0810. Whereas Stavropol and Soviet Merino 0.0861 and 0.1094. Also relatively close between Grozny - Edilbaevskoy, Grozny Karakul, Edilbaevskoy - Karakul: 0.1364 and 0.0851, respectively; 0.1620 and 0.1208; 0.1875 and 0.1192. The highest genetic distances were between Stavropol and Karakul 0.2664 and 0.1804, as well as between the Romanov and all studied species - 0.2491 ... 0.3211 and 0.1734 ... 0.2235

    Whole genome screening procures a holistic hold of the Russian chicken gene pool heritage and demographic history

    Get PDF
    Simple Summary: A collection of native farm animal breeds can be considered as a gene pool and a national heritage. Long-term artificial selection in domesticated animals has certain effects on their genomes, which can be investigated using genome-wide screens for DNA sequence variation, that is, so-called single nucleotide polymorphism (SNP) screens. Here, we looked at the genomes of 19 Russian chicken gene pool breeds, both native and imported, evaluating the contrasting egg, meat and dual-purpose types. Based on genetic diversity statistics, we identified differences between the breeds using many DNA markers (SNPs) that may represent genomic regions that are being selected for, either within a specific breed or shared between breeds. Our research will be helpful for further understanding the genomic diversity and demographic history of Russian domestic chickens. This would be essential for their successful breeding. Abstract: A study for genomic variation that may reflect putative selective signaling and be associated with economically important traits is instrumental for obtaining information about demographic and selection history in domestic animal species and populations. A rich variety of the Russian chicken gene pool breeds warrants a further detailed study. Specifically, their genomic features can derive implications from their genome architecture and selective footprints for their subsequent breeding and practical efficient exploitation. In the present work, whole genome genotyping of 19 chicken breeds (20 populations with up to 71 samples each) was performed using the Chicken 50 K BeadChip DNA chip. The studied breed sample included six native Russian breeds of chickens developed in the 17th–19th centuries, as well as eight Russian chicken breeds, including the Russian White (RW), created in the 20th century on the basis of improving local chickens using breeds of foreign selection. Five specialized foreign breeds of chickens, including the White Leghorn (WL), were used along with other breeds representing the Russian gene pool. The characteristics of the genetic diversity and phylogenetic relationships of the native breeds of chickens were represented in comparison with foreign breeds. It was established that the studied native breeds demonstrate their own genetic structure that distinguishes them from foreign breeds, and from each other. For example, we previously made an assumption on what could cause the differences between two RW populations, RW1 and RW2. From the data obtained here, it was verified that WL was additionally crossed to RW2, unlike RW1. Thus, inherently, RW1 is a purer population of this improved Russian breed. A significant contribution of the gene pool of native breeds to the global genetic diversity of chickens was shown. In general, based on the results of a multilateral survey of this sample of breeds, it can be concluded that phylogenetic relationships based on their genetic structure and variability robustly reflect the known, previously postulated and newly discovered patterns of evolution of native chickens. The results herein presented will aid selection and breeding work using this gene pool

    Unveiling comparative genomic trajectories of selection and key candidate genes in egg-type Russian White and meat-type White Cornish chickens

    Get PDF
    Simple Summary: The search for genomic regions of putative selective signaling is instrumental in obtaining information about selection history in various species and populations. Domestic animals are subject to long-term artificial selection that leaves certain footprints in their genomes one can explore using genome-wide SNP screen. We examined here genomes of two contrasting chicken breeds, the native egg-type Russian White and meat-type White Cornish. Using three statistics, we identified genomic regions under putative selection, both breed-specific and shared between two breeds, that harbor key candidate genes for economically important traits. Our findings will be useful in further understanding selection history and genomic diversity in domestic chickens that would be pivotal in their productive breeding. Abstract: Comparison of genomic footprints in chicken breeds with different selection history is a powerful tool in elucidating genomic regions that have been targeted by recent and more ancient selection. In the present work, we aimed at examining and comparing the trajectories of artificial selection in the genomes of the native egg-type Russian White (RW) and meat-type White Cornish (WC) breeds. Combining three different statistics (top 0.1% SNP by FST value at pairwise breed comparison, hapFLK analysis, and identification of ROH island shared by more than 50% of individuals), we detected 45 genomic regions under putative selection including 11 selective sweep regions, which were detected by at least two different methods. Four of such regions were breed-specific for each of RW breed (on GGA1, GGA5, GGA8, and GGA9) and WC breed (on GGA1, GGA5, GGA8, and GGA28), while three remaining regions on GGA2 (two sweeps) and GGA3 were common for both breeds. Most of identified genomic regions overlapped with known QTLs and/or candidate genes including those for body temperatures, egg productivity, and feed intake in RW chickens and those for growth, meat and carcass traits, and feed efficiency in WC chickens. These findings were concordant with the breed origin and history of their artificial selection. We determined a set of 188 prioritized candidate genes retrieved from the 11 overlapped regions of putative selection and reviewed their functions relative to phenotypic traits of interest in the two breeds. One of the RW-specific sweep regions harbored the known domestication gene, TSHR. Gene ontology and functional annotation analysis provided additional insight into a functional coherence of genes in the sweep regions. We also showed a greater candidate gene richness on microchromosomes relative to macrochromosomes in these genomic areas. Our results on the selection history of RW and WC chickens and their key candidate genes under selection serve as a profound information for further conservation of their genomic diversity and efficient breeding

    Selective footprints and genes relevant to cold adaptation and other phenotypic traits are unscrambled in the genomes of divergently selected chicken breeds

    Get PDF
    Background: The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by, and formed due to, past and current admixture events. Adaptation to diverse environments, including acclimation to harsh climatic conditions, has also left selection footprints in breed genomes. Results: Using the Chicken 50K_CobbCons SNP chip, we genotyped four divergently selected breeds: two aboriginal, cold tolerant Ushanka and Orloff Mille Fleur, one egg-type Russian White subjected to artificial selection for cold tolerance, and one meat-type White Cornish. Signals of selective sweeps were determined in the studied breeds using three methods: (1) assessment of runs of homozygosity islands, (2) FST based population differential analysis, and (3) haplotype differentiation analysis. Genomic regions of true selection signatures were identified by two or more methods or in two or more breeds. In these regions, we detected 540 prioritized candidate genes supplemented them with those that occurred in one breed using one statistic and were suggested in other studies. Amongst them, SOX5, ME3, ZNF536, WWP1, RIPK2, OSGIN2, DECR1, TPO, PPARGC1A, BDNF, MSTN, and beta-keratin genes can be especially mentioned as candidates for cold adaptation. Epigenetic factors may be involved in regulating some of these important genes (e.g., TPO and BDNF). Conclusion: Based on a genome-wide scan, our findings can help dissect the genetic architecture underlying various phenotypic traits in chicken breeds. These include genes representing the sine qua non for adaptation to harsh environments. Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene expression mechanisms or more than one overlapping response known in cold-exposed individuals, and this warrants further investigation

    Ancient mitogenomes from Pre-Pottery Neolithic Central Anatolia and the effects of a Late Neolithic bottleneck in sheep (Ovis aries)

    Get PDF
    Occupied between ~10,300 and 9300 years ago, the Pre-Pottery Neolithic site of Aşıklı Höyük in Central Anatolia went through early phases of sheep domestication. Analysis of 629 mitochondrial genomes from this and numerous sites in Anatolia, southwest Asia, Europe, and Africa produced a phylogenetic tree with excessive coalescences (nodes) around the Neolithic, a potential signature of a domestication bottleneck. This is consistent with archeological evidence of sheep management at Aşıklı Höyük which transitioned from residential stabling to open pasturing over a millennium of site occupation. However, unexpectedly, we detected high genetic diversity throughout Aşıklı Höyük's occupation rather than a bottleneck. Instead, we detected a tenfold demographic bottleneck later in the Neolithic, which caused the fixation of mitochondrial haplogroup B in southwestern Anatolia. The mitochondrial genetic makeup that emerged was carried from the core region of early Neolithic sheep management into Europe and dominates the matrilineal diversity of both its ancient and the billion-strong modern sheep populations

    Ancient mitogenomes from Pre-Pottery Neolithic Central Anatolia and the effects of a Late Neolithic bottleneck in sheep (Ovis aries)

    Get PDF
    Occupied between ~10,300 and 9300 years ago, the Pre-Pottery Neolithic site of Aşıklı Höyük in Central Anatolia went through early phases of sheep domestication. Analysis of 629 mitochondrial genomes from this and numerous sites in Anatolia, southwest Asia, Europe, and Africa produced a phylogenetic tree with excessive coalescences (nodes) around the Neolithic, a potential signature of a domestication bottleneck. This is consistent with archeological evidence of sheep management at Aşıklı Höyük which transitioned from residential stabling to open pasturing over a millennium of site occupation. However, unexpectedly, we detected high genetic diversity throughout Aşıklı Höyük’s occupation rather than a bottleneck. Instead, we detected a tenfold demographic bottleneck later in the Neolithic, which caused the fixation of mitochondrial haplogroup B in southwestern Anatolia. The mitochondrial genetic makeup that emerged was carried from the core region of early Neolithic sheep management into Europe and dominates the matrilineal diversity of both its ancient and the billion-strong modern sheep populations

    Whole-genome analysis of introgressive hybridization and characterization of the bovine legacy of Mongolian yaks

    Get PDF
    The yak is remarkable for its adaptation to high altitude and occupies a central place in the economies of the mountainous regions of Asia. At lower elevations, it is common to hybridize yaks with cattle to combine the yak’s hardiness with the productivity of cattle. Hybrid males are sterile, however, preventing the establishment of stable hybrid populations, but not a limited introgression after backcrossing several generations of female hybrids to male yaks. Here we inferred bovine haplotypes in the genomes of 76 Mongolian yaks using high-density SNP genotyping and whole-genome sequencing. These yaks inherited ~1.3% of their genome from bovine ancestors after nearly continuous admixture over at least the last 1,500 years. The introgressed regions are enriched in genes involved in nervous system development and function, and particularly in glutamate metabolism and neurotransmission. We also identified a novel mutation associated with a polled (hornless) phenotype originating from Mongolian Turano cattle. Our results suggest that introgressive hybridization contributed to the improvement of yak management and breeding

    Data from: A study of applicability of SNP chips developed for bovine and ovine species to whole-genome analysis of reindeer Rangifer tarandus

    No full text
    Two sets of commercially available single nucleotide polymorphisms (SNPs) developed for cattle (BovineSNP50 BeadChip) and sheep (OvineSNP50 BeadChip) have been trialed for whole-genome analysis of 4 female samples of Rangifer tarandus inhabiting Russia. We found out that 43.0% of bovine and 47.0% of Ovine SNPs could be genotyped, while only 5.3% and 2.03% of them were respectively polymorphic. The scored and the polymorphic SNPs were identified on each bovine and each ovine chromosome, but their distribution was not unique. The maximal value of runs of homozygosity (ROH) was 30.93Mb (for SNPs corresponding to bovine chromosome 8) and 80.32Mb (for SNPs corresponding to ovine chromosome 7). Thus, the SNP chips developed for bovine and ovine species can be used as a powerful tool for genome analysis in reindeer R. tarandus
    corecore