262 research outputs found

    Homozygous mutation in the prokineticin-receptor2 gene (Val274Asp) presenting as reversible Kallmann syndrome and persistent oligozoospermia: case report.

    Get PDF
    Prokineticin 2 (Prok2) or prokineticin-receptor2 (Prok-R2) gene mutations are associated with Kallmann syndrome (KS). We describe a new homozygous mutation of Prok-R2 gene in a man displaying KS with an apparent reversal of hypogonadism. The proband, offspring of consanguineous parents, presented at age 19 years with absent puberty, no sense of smell, low testosterone and gonadotrophin levels. Magnetic resonance imaging showed olfactory bulb absence. The patient achieved virilization and spermatogenesis with gonadotrophin administration. Two years after discontinuing hormonal therapy, he maintained moderate oligozoospermia and normal testosterone levels. Prok2 and Prok- R2 gene sequence analyses were performed. The proband had a homozygous mutation in Prok-R2 exon 2 that harbours the c.T820>A base substitution, causing the introduction of an aspartic acid in place of valine at position 274 (Val274Asp). His mother had the same mutation in heterozygous state. This report describes a novel homozygous mutation of Prok-R2 gene in a man with variant KS, underlying the role of Prok-R2 gene in the olfactory and reproductive system development in humans. Present findings indicate that markedly delayed activation of gonadotrophin secretion may occur in some KS cases with definite gene defects, and that oligozoospermia might result from a variant form of reversible hypogonadotrophic hypogonadism

    Interpolation with the polynomial kernels

    Get PDF
    The polynomial kernels are widely used in machine learning and they are one of the default choices to develop kernel-based classification and regression models. However, they are rarely used and considered in numerical analysis due to their lack of strict positive definiteness. In particular they do not enjoy the usual property of unisolvency for arbitrary point sets, which is one of the key properties used to build kernel-based interpolation methods. This paper is devoted to establish some initial results for the study of these kernels, and their related interpolation algorithms, in the context of approximation theory. We will first prove necessary and sufficient conditions on point sets which guarantee the existence and uniqueness of an interpolant. We will then study the Reproducing Kernel Hilbert Spaces (or native spaces) of these kernels and their norms, and provide inclusion relations between spaces corresponding to different kernel parameters. With these spaces at hand, it will be further possible to derive generic error estimates which apply to sufficiently smooth functions, thus escaping the native space. Finally, we will show how to employ an efficient stable algorithm to these kernels to obtain accurate interpolants, and we will test them in some numerical experiment. After this analysis several computational and theoretical aspects remain open, and we will outline possible further research directions in a concluding section. This work builds some bridges between kernel and polynomial interpolation, two topics to which the authors, to different extents, have been introduced under the supervision or through the work of Stefano De Marchi. For this reason, they wish to dedicate this work to him in the occasion of his 60th birthday

    Treating the Gibbs phenomenon in barycentric rational interpolation and approximation via the S-Gibbs algorithm

    Get PDF
    In this work, we extend the so-called mapped bases or fake nodes approach to the barycentric rational interpolation of Floater-Hormann and to AAA approximants. More precisely, we focus on the reconstruction of discontinuous functions by the S-Gibbs algorithm introduced in [12]. Numerical tests show that it yields an accurate approximation of discontinuous functions

    More properties of (β,γ)-Chebyshev functions and points

    Get PDF
    Recently, (β,γ)-Chebyshev functions, as well as the corresponding zeros, have been introduced as a generalization of classical Chebyshev polynomials of the first kind and related roots. They consist of a family of orthogonal functions on a subset of [−1,1], which indeed satisfies a three-term recurrence formula. In this paper we present further properties, which are proven to comply with various results about classical orthogonal polynomials. In addition, we prove a conjecture concerning the Lebesgue constant's behavior related to the roots of (β,γ)-Chebyshev functions in the corresponding orthogonality interval

    Minimally invasive percutaneous treatment for osteoid osteoma of the Spine. A case report

    Get PDF
    Osteoid osteomas are benign but painful bone-forming tumors usually involving long bones, with localization at the spine in 10-20% of the cases. The most common symptom is back pain responding to nonsteroidal anti-inflammatory drugs, but in some cases, also radicular pain can be present. For years, surgical excision has been considered the best choice of treatment for cases with unresponsive pain and has been practiced with a high percentage of success but also a high rate of fusion with instrumentation. In the last years, percutaneous radiofrequency ablation has been proposed as a new mini-invasive technique for the treatment of osteoid osteomas

    Special Issue dedicated to Stefano De Marchi on the occasion of his 60th birthday

    Get PDF
    As colleagues and friends we dedicate this issue to Stefano De Marchi on the occasion of his 60th birthday, publishing works of some of his collaborators. Stefano has made many important contributions to approximation theory and beyond and is one of the “founding fathers” of this journal. Here we briefly reminisce and recount some of our experiences with Stefano in the spirit of the occasion

    Cholesteatoma vs granulation tissue: a differential diagnosis by DWI-MRI apparent diffusion coefficient

    Get PDF
    To diagnose cholesteatoma when it is not visible through tympanic perforation, imaging techniques are necessary. Recently, the combination of computed tomography and magnetic resonance imaging has proven effective to diagnose middle ear cholesteatoma. In particular, diffusion weighted images have integrated the conventional imaging for the qualitative assessment of cholesteatoma. Accordingly, the aim of this study was to obtain a quantitative analysis of cholesteatoma calculating the apparent diffusion coefficient value. So, we investigated whether it could differentiate cholesteatoma from other inflammatory tissues both in a preoperative and in a postoperative study
    corecore