28 research outputs found
Aneurysmal subarachnoid haemorrhage: effect of CRHR1 genotype on fatigue and depression
Background
Emotional health disturbances are common after aneurysmal subarachnoid hemorrhage (aSAH) and their causes are largely unexplored. Corticotropin-releasing hormone receptor 1 (CRHR1) is a key factor in stress reactivity and development of mental health disturbances after adverse life-events.
Methods
We explore the effect of CRHR1 genotype on mental health after aSAH in a retrospective cohort study. One hundred twenty-five patients have been assessed using EST-Q mental health questionnaire. Genotyping of CRHR1 single nucleotide polymorphisms (SNP-s) was performed (Rs7209436, Rs110402, Rs242924).
Results
Fatigue was present in almost half of aSAH patients, depression and anxiety in one-third. There was a high prevalence of insomnia and panic complaints. Rs110402 minor allele decreased the risk of depression (OR = 0.25, p = 0.027 for homozygotes). Depression was present in 14% vs 41% in minor and major allele homozygotes, respectively. Rs110402, Rs242924 and Rs7209436 minor alleles and TAT-haplotype, formed by them, were protective against fatigue. After Bonferroni correction only the association of Rs110402 with fatigue remained statistically significant (OR = 0.21, p = 0.006 for minor allele homozygotes). Results remained statistically significant when adjusted for gender, admission state, age and time from aSAH. In multiple regression analysis occurrence of fatigue was dependent on anxiety, modified Rankin score and Rs110402 genotype (R2 = 0.34, p <  0.001).
Conclusions
CRHR1 minor genotype was associated with a lower risk of fatigue and depression after aSAH. Genetic predisposition to mental health disturbances associated with negative life-events could be a risk factor for fatigue and depression after aSAH and selected patients might benefit from advanced counselling in the recovery phase
Mutational analysis of COL1A1 and COL1A2 genes among Estonian osteogenesis imperfecta patients
Background
Osteogenesis imperfecta (OI) is a rare bone disorder. In 90% of cases, OI is caused by mutations in the COL1A1/2 genes, which code procollagen α1 and α2 chains. The main aim of the current research was to identify the mutational spectrum of COL1A1/2 genes in Estonian patients. The small population size of Estonia provides a unique chance to explore the collagen I mutational profile of 100% of OI families in the country.
Methods
We performed mutational analysis of peripheral blood gDNA of 30 unrelated Estonian OI patients using Sanger sequencing of COL1A1 and COL1A2 genes, including all intron-exon junctions and 5′UTR and 3′UTR regions, to identify causative OI mutations.
Results
We identified COL1A1/2 mutations in 86.67% of patients (26/30). 76.92% of discovered mutations were located in the COL1A1 (n = 20) and 23.08% in the COL1A2 (n = 6) gene. Half of the COL1A1/2 mutations appeared to be novel. The percentage of quantitative COL1A1/2 mutations was 69.23%. Glycine substitution with serine was the most prevalent among missense mutations. All qualitative mutations were situated in the chain domain of pro-α1/2 chains.
Conclusion
Our study shows that among the Estonian OI population, the range of collagen I mutations is quite high, which agrees with other described OI cohorts of Northern Europe. The Estonian OI cohort differs due to the high number of quantitative variants and simple missense variants, which are mostly Gly to Ser substitutions and do not extend the chain domain of COL1A1/2 products
Transcriptional landscape analysis identifies differently expressed genes involved in follicle-stimulating hormone induced postmenopausal osteoporosis
Osteoporosis is a disorder associated with bone tissue reorganization, bone mass, and mineral density. Osteoporosis can severely affect postmenopausal women, causing bone fragility and osteoporotic fractures. The aim of the current study was to compare blood mRNA profiles of postmenopausal women with and without osteoporosis, with the aim of finding different gene expressions and thus targets for future osteoporosis biomarker studies. Our study consisted of transcriptome analysis of whole blood serum from 12 elderly female osteoporotic patients and 12 non-osteoporotic elderly female controls. The transcriptome analysis was performed with RNA sequencing technology. For data analysis, the edgeR package of R Bioconductor was used. Two hundred and fourteen genes were expressed differently in osteoporotic compared with non-osteoporotic patients. Statistical analysis revealed 20 differently expressed genes with a false discovery rate of less than 1.47 × 10(−4) among osteoporotic patients. The expression of 10 genes were up-regulated and 10 down-regulated. Further statistical analysis identified a potential osteoporosis mRNA biomarker pattern consisting of six genes: CACNA1G, ALG13, SBK1, GGT7, MBNL3, and RIOK3. Functional ingenuity pathway analysis identified the strongest candidate genes with regard to potential involvement in a follicle-stimulating hormone activated network of increased osteoclast activity and hypogonadal bone loss. The differentially expressed genes identified in this study may contribute to future research of postmenopausal osteoporosis blood biomarkers
Aneurysmal subarachnoid haemorrhage: Effect of CRHR1 genotype on mental health-related quality of life
Quality of life (QoL) disturbances are common after aneurysmal subarachnoid hemorrhage (aSAH) both in physical and mental health domains and their causes are not clearly understood. Corticotropin-releasing hormone receptor 1 (CRHR1) is involved in stress reactivity and development of mental health disturbances after negative life-events. We performed a retrospective cohort study of long-term QoL outcomes among 125 surgically treated aSAH patients (2001–2013). QoL was assessed with Short Form Health Survey (SF-36) and compared to an age and gender matched general population. Genotyping of CRHR1 single nucleotide polymorphisms was performed (Rs7209436, Rs110402, Rs242924) and their effect on QoL scores was explored. aSAH patients experienced a reduced quality of life in all domains. CRHR1 minor genotype was associated with higher SF-36 mental health (OR = 1.31–1.6, p < 0.05), role-emotional (OR = 1.57, p = 0.04) and vitality scores (OR = 1.31–1.38, p < 0.05). Association of all studied SNP’s with vitality and Rs242924 with mental health scores remained statistically significant after Bonferroni correction. Mental quality of life scores were associated with physical state of patients, antidepressant history and CRHR1 genotype. Predisposition to mental health disturbances after stressful life-events might be associated with reduced mental QoL after aSAH and selected patients could be provided advanced counselling in the recovery phase
Mutation analysis of the <i>COL1A1</i> and <i>COL1A2</i> genes in Vietnamese patients with osteogenesis imperfecta
BackgroundThe genetics of osteogenesis imperfecta (OI) have not been studied in a Vietnamese population before. We performed mutational analysis of the COL1A1 and COL1A2 genes in 91 unrelated OI patients of Vietnamese origin. We then systematically characterized the mutation profiles of these two genes which are most commonly related to OI.MethodsGenomic DNA was extracted from EDTA-preserved blood according to standard high-salt extraction methods. Sequence analysis and pathogenic variant identification was performed with Mutation Surveyor DNA variant analysis software. Prediction of the pathogenicity of mutations was conducted using Alamut Visual software. The presence of variants was checked against Dalgleish's osteogenesis imperfecta mutation database.ResultsThe sample consisted of 91 unrelated osteogenesis imperfecta patients. We identified 54 patients with COL1A1/2 pathogenic variants; 33 with COL1A1 and 21 with COL1A2. Two patients had multiple pathogenic variants. Seventeen novel COL1A1 and 10 novel COL1A2 variants were identified. The majority of identified COL1A1/2 pathogenic variants occurred in a glycine substitution (36/56, 64.3 %), usually serine (23/36, 63.9 %). We found two pathogenic variants of the COL1A1 gene c.2461G > A (p.Gly821Ser) in four unrelated patients and one, c.2005G > A (p.Ala669Thr), in two unrelated patients.ConclusionOur data showed a lower number of collagen OI pathogenic variants in Vietnamese patients compared to reported rates for Asian populations. The OI mutational profile of the Vietnamese population is unique and related to the presence of a high number of recessive mutations in non-collagenous OI genes. Further analysis of OI patients negative for collagen mutations, is required
Psoriasis-Specific RNA Isoforms Identified by RNA-Seq Analysis of 173,446 Transcripts
Background: Several studies have been published that investigated potential links between transcriptome changes and psoriasis using microarrays and RNA-seq technologies but no previous study has analysed expression profile of alternatively spliced transcripts in psoriasis. Objectives: Identification of potential alternatively spliced RNA isoforms with disease-specific expression profile. Methods: Using our published RNA-sequencing data from psoriatic lesional (LP), psoriatic non-lesional (NLP) and normal control skin (C), we analysed the differential expression of RNA splicing variants. LP sample was compared with NLP, as was LP with C and NLP with C. Results: Transcript-based annotation analysed 173,446 transcripts (RNA isoforms) and around 9,000 transcripts were identified as differentially expressed between study groups. Several previously undescribed RNA variants were found. For instance transcript ETV3_3 (ENST00000326786) was significantly down-regulated in LP and NLP skin. ETV3 is a transcriptional repressor that contributes to the downstream anti-inflammatory effects of IL-10. We also identified diseases-specific transcripts (S100A7A, IL36RN_4 and IL36G_3) of genes already recognized to be involved in inflammation and immune response. Conclusion: Psoriasis is characterized by significant differences in the expression of RNA alternative isoforms. Description of these new isoforms improves our knowledge about this complex disease
COL1A1/2 Pathogenic Variants and Phenotype Characteristics in Ukrainian Osteogenesis Imperfecta Patients
Osteogenesis imperfecta (OI) is a hereditary bone disorder caused by defects of type I collagen. Although up to 90% of patients harbor pathogenic variants in the COL1A1/2 gene, which codes for collagen α1/2 chains, the spectrum of OI genotypes may differ between populations, and there is academic controversy around OI genotype-phenotype correlations. In the current study, 94 Ukrainian OI families were interviewed. Clinical and genealogical information was collected from patients in spoken form, and their phenotypes were described. To identify the spectrum of collagen I pathogenic variants, COL1A1/2 mutational analysis with Sanger sequencing was performed on the youngest affected individual of every family. Of the 143 patients investigated, 67 (46.85%) had type I OI, 24 (16.78%) had type III, 49 (34.27%) had type IV, and III (2.10%) had type V. The mean number of fractures suffered per patient per year was 1.32 ± 2.88 (type I 0.50 ± 0.43; type III 3.51 ± 6.18; type IV 1.44 ± 1.77; and type 5 0.77 ± 0.23). 87.23% of patients had skeletal deformations of different severity. Blue sclera, dentinogenesis imperfecta, and hearing loss were present in 87%, 55%, and 22% of patients, respectively. COL1A1/2 pathogenic variants were harbored by 60 patients (63.83%). 27 pathogenic variants are described herein for the first time. The majority of the pathogenic variants were located in the COL1A1 gene (76.19%). Half (49.21%) of the pathogenic variants were represented by structural variants. OI phenotype severity was highly correlated with type of collagen I defect. The current article presents an analysis of the clinical manifestations and COL1A1/2 mutational spectrum of 94 Ukrainian OI families with 27 novel COL1A1/2 pathogenic variants. It is hoped that this data and its analysis will contribute toward the increased understanding of the phenotype development and genetics of the disorder
IFITM5 pathogenic variant causes osteogenesis imperfecta V with various phenotype severity in Ukrainian and Vietnamese patients
Background
Osteogenesis imperfecta (OI) covers a spectrum of bone fragility disorders. OI is classified into five types; however, the genetic causes of OI might hide in pathogenic variants of 20 different genes. Often clinical OI types mimic each other. This sometimes makes it impossible to identify the OI type clinically, which can be a risk for patients. Up to 90% of OI types I–IV are caused by pathogenic variants in the COL1A1/2 genes. OI type V is caused by the c.-14C > T pathogenic variant in the 5′UTR of the IFITM5 gene and is characterized by hyperplastic callus formation and the ossification of interosseous membranes.
Results
In the current study, we performed IFITM5 5′UTR region mutational analysis using Sanger sequencing on 90 patients who were negative for COL1A1/2 pathogenic variants. We also investigated the phenotypes of five patients with genetically confirmed OI type V. The proportion of OI type V patients in our cohort of all OI patients was 1.48%. In one family, there was a history of OI in at least three generations. Phenotype severity differed from mild to extremely severe among patients, but all patients harbored the same typical pathogenic variant. One patient had no visible symptoms of OI type V and was suspected to have had OI type IV previously. We also identified a case of extremely severe hyperplastic callus in a 15-year-old male, who has hearing loss and brittleness of teeth.
Conclusions
OI type V is underlined with some unique clinical features; however, not all patients develop them. The phenotype spectrum might be even broader than previously suspected, including typical OI features: teeth brittleness, bluish sclera, hearing loss, long bones deformities, and joint laxity. We suggest that all patients negative for COL1A1/2 pathogenic variants be tested for the presence of an IFITM5 pathogenic variant, even if they are not expressing typical OI type V symptoms. Further studies on the pathological nature and hyperplastic callus formation mechanisms of OI type V are necessary
The Genetic Variations Associated With Time to Aseptic Loosening After Total Joint Arthroplasty
Background
Total joint arthroplasty (TJA) is one of the most frequent surgical procedures performed in modern hospitals, and aseptic loosening is the most common indication for revision surgeries. We conducted a systemic exploration of potential genetic determinants for early aseptic loosening.
Methods
Data from 423 patients undergoing TJA were collected and analyzed. Three analytical groups were formed based on joint arthroplasty status. Group 1 were TJA patients without symptoms of aseptic loosening of at least 1 year, group 2 were patients with primary TJA, and group 3 were patients receiving revision surgery because of aseptic loosening. Genome-wide genotyping comparing genotype frequencies between patients with and without aseptic loosening (group 3 vs groups 1 and 2) was conducted. A case-control association analysis and linear modeling were applied to identify the impact of the identified genes on implant survival with time to the revision as an outcome measure.
Results
We identified 52 single-nucleotide polymorphisms (SNPs) with a genome-wide suggestive P value less than 10−5 to be associated with the implant loosening. The most remarkable odds ratios (OR) were found with the variations in the IFIT2/IFIT3 (OR, 21.6), CERK (OR, 12.6), and PAPPA (OR, 14.0) genes. Variations in the genotypes of 4 SNPs—rs115871127, rs16823835, rs13275667, and rs2514486—predicted variability in the time to aseptic loosening. The time to aseptic loosening varied from 8 to 16 years depending on the genotype, indicating a substantial effect of genetic variance.
Conclusion
Development of the aseptic loosening is associated with several genetic variations and we identified at least 4 SNPs with a significant effect on the time for loosening. These data could help to develop a personalized approach for TJA and loosening management