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ABSTRACT  

Osteoporosis is a disorder associated with bone tissue reorganization, bone mass and mineral 

density. Osteoporosis can severely affect postmenopausal women, causing bone fragility and 

osteoporotic fractures. The aim of the current study was to compare blood mRNA profiles of 

postmenopausal women with and without osteoporosis, with the aim of finding different gene 

expression and thus targets for future osteoporosis biomarker studies. 

Our study consisted of transcriptome analysis of whole blood serum from twelve elderly female 

osteoporotic patients and twelve non-osteoporotic elderly female controls. The transcriptome 

analysis was performed with RNA sequencing technology. For data analysis, the edgeR 

package of R Bioconductor was used. 

Two hundred and fourteen genes were expressed differently in osteoporotic compared to non-

osteoporotic patients. Statistical analysis revealed 20 differently expressed genes with a false 

discovery rate of less than 1.47×10-4 among osteoporotic patients. The expression of 10 genes 

were up-regulated and 10 down-regulated. Further statistical analysis identified a potential 

osteoporosis mRNA biomarker pattern consisting of six genes: CACNA1G, ALG13, SBK1, 

GGT7, MBNL3, and RIOK3. Functional Ingenuity Pathway Analysis identified the strongest 

candidate genes with regard to potential involvement in a follicle-stimulating hormone activated 

network of increased osteoclast activity and hypogonadal bone loss. The differentially 

expressed genes identified in this study may contribute to future research of postmenopausal 

osteoporosis blood biomarkers. 

 

KEY WORDS:  bone, transcriptome, age, musculoskeletal, female, biomarkers 
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INTRODUCTION 

Osteoporosis (OP) is a skeletal fragility disorder characterized by low bone mineral density 

(BMD), modification of bone tissue microarchitecture quality, and susceptibility to sudden 

fractures.1 Osteoporotic fractures, including those of the hip and spine, are often causes of a 

poor quality of life, disability, and increased risk of mortality among patients.2 Every year the 

prevalence of OP increases globally, resulting in new health care and financial concerns.3  

Postmenopausal women face the largest challenge of bone loss, due to changes in levels of 

reproductive hormones.4,5 Postmenopausal osteoporosis (PMOP) is associated with a decrease 

of estrogen (ESR), and an increase of follicle-stimulating hormone (FSH) and luteinizing 

hormone (LH).6 FSH influences bone mass both indirectly and directly, via ESR and an 

extracellular signal-regulated kinase–mitogen activated protein kinase (Erk/Mek) signaling 

pathway with Gi2a stimulation of MEK/Erk, the nuclear factor  (NF-) and 3-kinase-Akt, 

respectively.7  

An understanding of OP mechanisms is crucial for effective disease prevention, diagnosis, and 

therapy. OP diagnosis and fracture risk estimation is based on a BMD scale (T-score < 2,5 

SD), however, OP fractures might occur among those at a moderate risk.8–10  

Evaluation of bone quality and fracture risk remains a research area of great interest. Previous 

studies have concentrated on miRNA signatures and bone turnover biochemical markers of 

OP.11–13 Whole-genome RNA sequencing (RNA-seq) is a powerful tool for investigating the 

pathological pathways of complex disorders. To the best of our knowledge, there are no 

previous studies of whole blood mRNA transcriptome analysis among postmenopausal 

osteoporotic patients. Total blood mRNA shares about 80% of transcriptome with other major 

tissues.14 mRNA reflects the functional state of cells, and integrates responses to both genetic 
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and epigenetic factors of gene regulation, making it a promising way to explore disease 

progression.15–17  

In the present study we report our whole blood RNA-seq transcriptome analysis of 12 elderly 

postmenopausal osteoporotic and 12 elderly non-osteoporotic females. Differential expression 

analysis was combined with functional network annotation. As a result, we found a pattern of 

differently expressed genes (DEGs) that are potentially involved in direct FSH 

osteoclastogenesis and a bone resorption activation pathway. Our findings might be of interest 

as new targets for future research of PMOP biomarkers that could result in more effective 

diagnosis and follow up of OP. 

 

 

METHODS 

Patients and controls 

The selection of female individuals for transcriptome analysis was based on bone mineral 

density. OP patients were selected from the bone densitometry database of the Clinic of 

Traumatology and Orthopedics, Tartu University Hospital. All selected osteoporotic patients 

had relatively similar spine BMD T-scores (Table 1b).  

We recruited a control group of 12 postmenopausal females with normal BMD from individuals 

who underwent densitometry testing during regular health care screening. Exclusion criteria for 

participation in the control group were a history of previous fractures, and disease or 

medications that can affect bone quality. We performed age and BMI matching among patients 

and controls in order to reduce an influence of these factors on the transcriptome analysis. Mean 

age, height, weight, and body mass index (BMI) values were calculated for both the control 

(KO) and OP groups (Table 1a). 
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As half of the patients had low BMD only in spine and others in both spine and hip measured 

regions we created two subgroups for further testing. Group A consisted of patients with 

osteoporosis only in the spine (T-score spine 2.92 SD, hip 0.9 SD), and Group B with both 

lower spine (2.97 SD) and hip (2.61 SD) osteoporosis (Table 1b).   

The protocols and informed consent form used in this study were approved by the Ethical 

Review Committee on Human Research of the University of Tartu (permit № 221/M-34). All 

participants gave written informed consent. 

 

Sample collection and RNA extraction 

Tempus Blood RNA Tubes (Applied Biosystems, Life Technologies Corp., Carlsbad, CA, 

USA) were used for collecting the samples of whole blood. Total RNA extraction from whole 

blood was achieved using a Tempus Spin RNA Isolation Kit (Ambion, Life Technologies Corp., 

Carlsbad, CA, USA). As total RNA from whole blood consists of up to 70% immunoglobulin 

mRNA, a GLOBINclear™ Kit (Ambion, Life Technologies Corp., Carlsbad, CA, USA) was 

applied to purify the samples of globin mRNA. The quality of total RNA was evaluated with 

an Agilent 2100 Bioanalyzer and RNA 6000 Nano kit (Agilent Technologies Inc., Santa Clara, 

CA, USA). The average RNA integrity number (RIN) of the samples was at least 7. 

 

Whole Transcriptome RNAseq library preparation and sequencing 

50ng of each total RNA sample was amplified by applying the Ovation RNA-Seq System V2 

(NuGen, Emeryville, CA, USA), after which SOLiD 5500 Wildfire (W) System chemistry (Life 

Technologies Corp., Carlsbad, CA, USA) was used to prepare the resulting cDNA for the DNA 

fragment library. Next, the 12 libraries were pooled together in equal amounts to construct two 
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different library pools. The pooled libraries were converted to SOLiD 5500W libraries, and 

sequencing was performed using a SOLiD 5500W platform and DNA sequencing chemistry 

(Life Technologies Corp., Carlsbad, CA, USA). Three-lane sequencing was applied and 12 

libraries per lane sequenced. 75bp from a forward direction were sequenced, which altogether 

gave at least 30 million mappable reads per sample, i.e. sufficient for evaluation of the 

expression pattern of the transcriptome. 

Statistical and functional analysis 

Raw reads and whole transcriptome analysis workflow were mapped using Lifescope 2.5.1 

software (Life Technologies Corp., Carlsbad, CA, USA). This workflow generates a very 

complex output, including gene and exon counts, alternative splicing, and fusion transcripts. 

For further analysis, we focused only on gene counts, because our primary question was related 

to the abundance of gene-targeted transcripts. For differential expression analysis the R 

Bioconductor package edgeR was used, which implements exact statistical methods and 

generalized linear models for multi-group and multifactorial experiments.18 A feature of edgeR 

is an empirical Bayes method that permits the estimation of gene-specific biological variation, 

even for experiments with minimal levels of biological replication. EdgeR can be applied to 

differential expression at gene, exon, or tag level. In our study we used model-based 

normalization and applied a negative binomial model. Testing for differential expression was 

done using the exact test. Power analysis was performed with the RNAseqPS web tool.19 

Heatmap clustering analysis was generated with the gplots package in R. Network and pathway 

analysis was generated with QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN 

Redwood City, CA, USA) software and the iPathwayGuide online tool (Advaita Plymouth, MI, 

USA).  
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Additionally, we tested the sensitivity of the DEGs as biomarker candidates of patients with 

osteoporosis, by comparing the mRNA patterns among OP patients’ subgroups, and controls 

using edgeR statistical analysis. 

 

 

RESULTS 

Differential expression analysis 

We performed whole blood mRNA-seq analysis to investigate the transcriptional profiles of 

non-OP and PMOP females. Whole transcriptome mRNA sequencing analysis identified 214 

DEGs with a confidence level of a false discovery rate (FDR) of less than 0.05. Of the 214 

genes, 154 were down-regulated. The twenty strongest DEGs (FDR less than 1.47×10-4) present 

in the osteoporotic patients and absent from the control group are shown in Table 2. The 

expression of ten DEGs was up-regulated and ten down-regulated.  

The statistical analysis of mRNA expression levels of the all OP patients using the edgeR 

Bioconductor package, revealed six candidate genes (CACNA1G, ALG13, SBK1, GGT7, 

MBNL3, and RIOK3) as the strongest candidates for a potential mRNA biomarker pattern 

indicative of osteoporosis. Subgroup analysis, showed no significant difference in expression 

of the previously identified 20 candidate osteoporosis biomarkers between the subgroups.  

Further analysis revealed a significant correlation between the expression of possible mRNA 

biomarkers and BMD values for OP patients compared to controls (Figures 1 & 2). The highest 

correlation of spine BMD was observed with the CACNA1G gene expression (R2=0.7842, 

p=5.03×10-7). Correlation between lumbar spine BMD and gene expression was more 

significant than the correlation between hip BMD and gene expression. On scatter plots of spine 
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BMD, patient and control groups were clearly distinguishable (Figure 1). On scatter plots of hip 

BMD, three groups formed (controls, only spine OP, and spine and hip OP). Compared to the 

controls, the expression of genes among  group B was more different than among group A. The 

FDR values of the potential mRNA OP biomarkers of subgroup B were also significantly lower 

than for group A (Table 3).  

DEGs with statistically significant values were clustered with Heatmap analysis (Figure 3).  The 

horizontal axis shows clustering within the two BMD groups (KO with high BMD, OP with 

low BMD). Differences between gene expression in the control (KO) and OP patient groups 

were clearly observed (Figures 3 & 4).  The statistical power of the performed transcriptome 

analysis was represented using receiver operating characteristic (ROC) curves for the four 

strongest candidate genes (GGT7, SBK1, ALG13, and CACNA1G) (Figure 5). All four DEGs 

had high predictive power of an osteoporosis, with few or no false positives. Accuracy for the 

strongest candidates ALG13 and CACNA1G was 1. 

Functional analysis 

Network pathway analysis of the 20 genes with the highest FDR values, revealed the potential 

involvement of the DEGs in the calcium signaling pathway and ERK/MAPK signaling 

pathways. 

Involvement of the identified PMOP DEGs in these connective tissue disorder pathways was 

also found in silico using QIAGEN’s Ingenuity software. IPA analysis showed that the DEGs 

were involved in cell growth and proliferation pathways, and molecular transport. IPA analysis 

also highlighted the involvement of the DEGs in the calcium signaling pathway and 

ERK/MAPK signaling pathway, Akt pathway, NF- and FSH network (Figure 6).  
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DISCUSSION 

Osteoporosis alters bone tissue metabolism pathways, which in our study manifested in changes 

in the mRNA levels of related genes in blood cells, and resulted in a special PMOP gene pattern 

of differential expression. Six candidate genes (CACNA1G, ALG13, SBK1, GGT7, MBNL3, and 

RIOK3) were the strongest candidates for a potential mRNA biomarker pattern indicative of 

osteoporosis in postmenopausal females. Subgroup analysis, showed no significant difference 

of candidate gene expression between the subgroups, which is expected according to basic 

knowledge of bone metabolism. Osteoporosis affects entire skeleton and areal BMD differences 

are connected to differences of bone shape, cortical-trabecular frame and metabolic activity, 

influenced by physical activity and life style of the individual. 

The strongest candidate gene was the alpha 1G subunit of the voltage-dependent calcium 

channel CACNA1G (FDR 7.75×10-69) and was the most highly up-regulated (logFC 2.502). The 

CACNA1G gene is involved in the bone morphogenetic protein (BMP) pathway, bone tissue 

mineralization, intracellular Ca signaling, and the Wnt β-catenin pathway.20 BMP and Wnt β-

catenin pathways are important for osteoblast differentiation and bone formation.21–23 

Depending on the form of alteration, changes to the BMP and Wnt β-catenin pathways can lead 

to bone fragility of different severities.23–27 We surmise that differential expression of the 

CACNA1G gene might also reflect alterations in bone tissue metabolism. 

In accordance with previous postmenopausal osteoporosis mRNA expression studies in 

circulating B cells, we found DEGs connected to the ERK/MAPK pathway. The estrogen 

receptor 1 (ESR1) and mitogen activated protein kinase 3 (MAPK3) network has been proposed 

as a cause of increased osteoclastogenesis and decreased osteoblastogenesis.28 However, the 

IPA analysis of the discovered PMOP profile from our study identified involvement of the 

DEGs in the FSH–ERK/MEK (MAPK) network, which is non-estrogen dependent. Our 
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findings support those of a previous study of postmenopausal osteoporosis in haploinsufficient 

FSH+/mice, which showed activation of Gi2a-coupled FSH receptors stimulated MEK/Erk, 

NF-, and Akt, and resulted in increased osteoclast activity and hypogonadal bone loss.7 FSH 

induced Gi2a, MEK/Erk, NF-, and Akt signaling pathways are well-known osteoclast 

stimulating pathways.29 Recent investigations have also highlighted an FSH-dependent PMOP 

mechanism, caused by elevation of FSH and LH levels in elderly females5,6. 

Although osteoporosis is connected with the aging process, the similar mean ages of the control 

(70.2) and osteoporosis patient (70.6) groups would likely exclude the possibility that the 

discovered mRNAs were a result of “aging” transcriptomes. We are confident that our results 

reflected a connection between the revealed candidate mRNA biomarkers and bone tissue 

reorganization. The matched body mass index (BMI) values of the groups also points to body 

weight being insignificant in terms of differences in the identified gene expression pattern of 

OP. The average BMD T-score of the control group for total hip (0.19) and lumbar spine (0.26) 

showed high bone quality, and allowed for more sensitive distinguishing of the contrasts 

between the mRNA expression patterns of OP patients and control subjects. 

The reliability of our results might seem limited by the small number of study individuals, but 

the high power analysis value of 0.9 of the data should give cause for confidence in the 

soundness of our results. Furthermore, the transcriptome analysis power of 12 samples is 0.7 

and 0.8 for both weak and strong compounds respectively, which is sufficient to reveal 

differentially expressed genes.30  

Blood cells do not express all bone cell proteins, thus some protein translation changes may 

have gone unnoticed during our study. Nonetheless, the present study revealed a connection 

between whole blood mRNAs and FSH, and postmenopausal bone loss in humans. 
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CONCLUSION 

In our study we investigated whole transcriptome RNA-sequencing of the blood serum of 

postmenopausal osteoporotic Estonian females, with the aim of revealing a candidate mRNA 

biomarker pattern for osteoporosis. We discovered a pattern of differently expressed mRNAs 

of OP that consisted of six genes: CACNA1G, ALG13, SBK1, GGT7, MBNL3, and RIOK3. This 

transcriptional landscape was connected to FSH induced Gi2a, MEK/Erk, NF-, and Akt 

signaling pathways, which are known to directly activate osteoclastogenesis and stimulate 

postmenopausal bone loss. The current findings may be useful for the development of a blood 

mRNA PMOP biomarker set which is a promising method of PMOP diagnosis and follow up. 

Further studies with larger numbers of independent cohorts of PMOP patients and controls are 

required.  
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Table 1. Patients and controls. (a) Characteristics of healthy control group individuals and OP 

patients. (b) Mean values for subgroups of OP patients: group A (OP only in lumbar spine), B 

(lumbar spine and total hip OP). 

Table 2. Candidate genes for osteoporosis mRNA biomarkers. The False Discovery Rate 

(FDR), log Fold Change (logFC) and p-values for the candidate genes are listed.  

Table 3. False Discovery Rate (FDR), log Fold Change (logFC) and p-values of mRNA 

biomarkers present in both A and B patient’s subgroups compared to healthy controls 

Figure 1. Correlation of candidate OP biomarkers gene expressions with spine BMD (T-

score). Circles indicate OP patients; diamonds indicate controls. 

Figure 2. Correlation of candidate OP biomarkers gene expressions with total hip BMD (T-

score). Circles indicate OP patients; diamonds indicate controls. 

Figure 3. Heatmap analysis of differently expressed genes. The clustering according to gene 

expression between control samples (KO) and osteoporotic samples (OP) is observed. 

Figure 4. Differences in expressions of the strongest candidate OP biomarker genes between 

osteoporotic patients (turquoise) and healthy controls (red). 

Figure 5.  Mean ROC curves for the strongest candidate OP biomarkers gene expressions 

Figure 6. Genetic networks revealed among potential OP mRNA biomarkers with Ingenuity 

pathway Analysis software. The functional analysis identified involvement of the 

differently expressed genes into connective tissue disorders and the “RNA Post-

Transcriptional Modification, Molecular Transport, RNA Trafficking” network. Down-

regulated and up-regulated genes are highlighted in green and red colors respectively. 


