153 research outputs found
Specifying content and mechanisms of change in interventions to change professionals’ practice : an illustration from the Good Goals study in occupational therapy
PMID: 23078918 [PubMed - indexed for MEDLINE] PMCID: PMC3502268 Free PMC Article The study was funded by the Chief Scientist Office of the Scottish Government Health Directorates (ref: CZF/1/38). The views expressed in this paper are those of the authors. The funder was not involved in the conduct of the study or preparation of the manuscript.Peer reviewedPublisher PD
A Web-Based Training Resource for Therapists to Deliver an Evidence-Based Exercise Program for Rheumatoid Arthritis of the Hand (iSARAH): Design, Development, and Usability Testing
Background: The Strengthening and Stretching for Rheumatoid Arthritis of the Hand (SARAH) is a tailored, progressive exercise program for people having difficulties with wrist and hand function due to rheumatoid arthritis (RA). The program was evaluated in a large-scale clinical trial and was found to improve hand function, was safe to deliver, and was cost-effective. These findings led to the SARAH program being recommended in the UK National Institute for Health and Care Excellence guidelines for the management of adults with RA. To facilitate the uptake of this evidence-based program by clinicians, we proposed a Web-based training program for SARAH (iSARAH) to educate and train physiotherapists and occupational therapists on delivering the SARAH program in their practice. The overall iSARAH implementation project was guided by the 5 phases of the analysis, design, development, implementation, and evaluation (ADDIE) system design model. Objective: The objective of our study was to conduct the first 3 phases of the model in the development of the iSARAH project. Methods: Following publication of the trial, the SARAH program materials were made available to therapists to download from the trial website for use in clinical practice. A total of 35 therapists who downloaded these materials completed an online survey to provide feedback on practice trends in prescribing hand exercises for people with RA, perceived barriers and facilitators to using the SARAH program in clinical practice, and their preferences for the content and Web features of iSARAH. The development and design of iSARAH were further guided by a team of multidisciplinary health professionals (n=17) who took part in a half-day development meeting. We developed the preliminary version of iSARAH and tested it among therapists (n=10) to identify and rectify usability issues and to produce the final version. Results: The major recommendations made by therapists and the multidisciplinary team were having a simple Web design and layout, clear exercise pictures and videos, and compatibility of iSARAH on various browsers and devices. We rectified all usability issues in the preliminary version to develop the final version of iSARAH, which included 4 short modules and additional sections on self-assessment, frequently asked questions, and a resource library. Conclusions: The use of the ADDIE design model and engagement of end users in the development and evaluation phases have rendered iSARAH a convenient, easy-to-use, and effective Web-based learning resource for therapists on how to deliver the SARAH program. There is also huge potential for adapting iSARAH across different cultures and languages, thus opening more opportunities for wider uptake and application of the SARAH program into practice
The cytoskeleton in cell-autonomous immunity: structural determinants of host defence
Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence
Micro-scale interactions between Arabidopsis root hairs and soil particles influence soil erosion
This is the final version. Available from Nature Research via the DOI in this record. Soil is essential for sustaining life on land. Plant roots play a crucial role in stabilising soil and minimising erosion, although these mechanisms are still not completely understood. Consequently, identifying and breeding for plant traits to enhance erosion resistance is challenging. Root hair mutants in Arabidopsis thaliana were studied using three different quantitative methods to isolate their effect on root-soil cohesion. We present compelling evidence that micro-scale interactions of root hairs with surrounding soil increase soil cohesion and reduce erosion. Arabidopsis seedlings with root hairs were more difficult to detach from soil, compost and sterile gel media than those with hairless roots, and it was 10-times harder to erode soil from roots with than without hairs. We also developed a model that can consistently predict the impact root hairs make to soil erosion resistance. Our study thus provides new insight into the mechanisms by which roots maintain soil stability.Leverhulme TrustBiotechnology and Biological Sciences Research CouncilEngineering and Physical Sciences Research Counci
Dealing with Missing Outcomes: Lessons from a Randomized Trial of a Prenatal Intervention to Prevent Early Childhood Caries
Severe early childhood caries (S-ECC) affects 17% of 2-3 year old children in South Australia impacting on their general health and well-being. S-ECC is largely preventable by providing mothers with anticipatory guidance. Randomised controlled trials (RCTs) are the most decisive way to test this, but that approach suffers from near inevitable loss to follow-up that occurs with preventative strategies and distant outcome assessment
Design Novel Dual Agonists for Treating Type-2 Diabetes by Targeting Peroxisome Proliferator-Activated Receptors with Core Hopping Approach
Owing to their unique functions in regulating glucose, lipid and cholesterol metabolism, PPARs (peroxisome proliferator-activated receptors) have drawn special attention for developing drugs to treat type-2 diabetes. By combining the lipid benefit of PPAR-alpha agonists (such as fibrates) with the glycemic advantages of the PPAR-gamma agonists (such as thiazolidinediones), the dual PPAR agonists approach can both improve the metabolic effects and minimize the side effects caused by either agent alone, and hence has become a promising strategy for designing effective drugs against type-2 diabetes. In this study, by means of the powerful “core hopping” and “glide docking” techniques, a novel class of PPAR dual agonists was discovered based on the compound GW409544, a well-known dual agonist for both PPAR-alpha and PPAR-gamma modified from the farglitazar structure. It was observed by molecular dynamics simulations that these novel agonists not only possessed the same function as GW409544 did in activating PPAR-alpha and PPAR-gamma, but also had more favorable conformation for binding to the two receptors. It was further validated by the outcomes of their ADME (absorption, distribution, metabolism, and excretion) predictions that the new agonists hold high potential to become drug candidates. Or at the very least, the findings reported here may stimulate new strategy or provide useful insights for discovering more effective dual agonists for treating type-2 diabetes. Since the “core hopping” technique allows for rapidly screening novel cores to help overcome unwanted properties by generating new lead compounds with improved core properties, it has not escaped our notice that the current strategy along with the corresponding computational procedures can also be utilized to find novel and more effective drugs for treating other illnesses
The Explosion Mechanism of Core-Collapse Supernovae and Its Observational Signatures
The death of massive stars is shrouded in many mysteries. One of them is the
mechanism that overturns the collapse of the degenerate iron core into an
explosion, a process that determines the supernova explosion energy, properties
of the surviving compact remnant, and the nucleosynthetic yields. The number of
core-collapse supernova observations has been growing with an accelerating pace
thanks to modern time-domain astronomical surveys and new tests of the
explosion mechanism are becoming possible. We review predictions of
parameterized supernova explosion models and compare them with explosion
properties inferred from observed light curves, spectra, and neutron star
masses.Comment: Reviews in Frontiers of Modern Astrophysics; From Space Debris to
Cosmology, edited by Kab\'ath, Petr; Jones, David; Skarka, Marek. ISBN:
978-3-030-38509-5. Cham: Springer International Publishing, 2020, pp. 189-21
Application of Consensus Scoring and Principal Component Analysis for Virtual Screening against β-Secretase (BACE-1)
BACKGROUND: In order to identify novel chemical classes of β-secretase (BACE-1) inhibitors, an alternative scoring protocol, Principal Component Analysis (PCA), was proposed to summarize most of the information from the original scoring functions and re-rank the results from the virtual screening against BACE-1. METHOD: Given a training set (50 BACE-1 inhibitors and 9950 inactive diverse compounds), three rank-based virtual screening methods, individual scoring, conventional consensus scoring and PCA, were judged by the hit number in the top 1% of the ranked list. The docking poses were generated by Surflex, five scoring functions (Surflex_Score, D_Score, G_Score, ChemScore, and PMF_Score) were used for pose extraction. For each pose group, twelve scoring functions (Surflex_Score, D_Score, G_Score, ChemScore, PMF_Score, LigScore1, LigScore2, PLP1, PLP2, jain, Ludi_1, and Ludi_2) were used for the pose rank. For a test set, 113,228 chemical compounds (Sigma-Aldrich® corporate chemical directory) were docked by Surflex, then ranked by the same three ranking methods motioned above to select the potential active compounds for experimental test. RESULTS: For the training set, the PCA approach yielded consistently superior rankings compared to conventional consensus scoring and single scoring. For the test set, the top 20 compounds according to conventional consensus scoring were experimentally tested, no inhibitor was found. Then, we relied on PCA scoring protocol to test another different top 20 compounds and two low micromolar inhibitors (S450588 and 276065) were emerged through the BACE-1 fluorescence resonance energy transfer (FRET) assay. CONCLUSION: The PCA method extends the conventional consensus scoring in a quantitative statistical manner and would appear to have considerable potential for chemical screening applications
The Analysis of Teaching of Medical Schools (AToMS) survey: an analysis of 47,258 timetabled teaching events in 25 UK medical schools relating to timing, duration, teaching formats, teaching content, and problem-based learning
BACKGROUND: What subjects UK medical schools teach, what ways they teach subjects, and how much they teach those subjects is unclear. Whether teaching differences matter is a separate, important question. This study provides a detailed picture of timetabled undergraduate teaching activity at 25 UK medical schools, particularly in relation to problem-based learning (PBL). METHOD: The Analysis of Teaching of Medical Schools (AToMS) survey used detailed timetables provided by 25 schools with standard 5-year courses. Timetabled teaching events were coded in terms of course year, duration, teaching format, and teaching content. Ten schools used PBL. Teaching times from timetables were validated against two other studies that had assessed GP teaching and lecture, seminar, and tutorial times. RESULTS: A total of 47,258 timetabled teaching events in the academic year 2014/2015 were analysed, including SSCs (student-selected components) and elective studies. A typical UK medical student receives 3960 timetabled hours of teaching during their 5-year course. There was a clear difference between the initial 2 years which mostly contained basic medical science content and the later 3 years which mostly consisted of clinical teaching, although some clinical teaching occurs in the first 2 years. Medical schools differed in duration, format, and content of teaching. Two main factors underlay most of the variation between schools, Traditional vs PBL teaching and Structured vs Unstructured teaching. A curriculum map comparing medical schools was constructed using those factors. PBL schools differed on a number of measures, having more PBL teaching time, fewer lectures, more GP teaching, less surgery, less formal teaching of basic science, and more sessions with unspecified content. DISCUSSION: UK medical schools differ in both format and content of teaching. PBL and non-PBL schools clearly differ, albeit with substantial variation within groups, and overlap in the middle. The important question of whether differences in teaching matter in terms of outcomes is analysed in a companion study (MedDifs) which examines how teaching differences relate to university infrastructure, entry requirements, student perceptions, and outcomes in Foundation Programme and postgraduate training
Exploring UK medical school differences: the MedDifs study of selection, teaching, student and F1 perceptions, postgraduate outcomes and fitness to practise
BACKGROUND: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. METHOD: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g. PBL schools, spend per student, staff-student ratio), selection measures (e.g. entry grades), teaching and assessment (e.g. traditional vs PBL, specialty teaching, self-regulated learning), student satisfaction, Foundation selection scores, Foundation satisfaction, postgraduate examination performance and fitness to practise (postgraduate progression, GMC sanctions). Six specialties (General Practice, Psychiatry, Anaesthetics, Obstetrics and Gynaecology, Internal Medicine, Surgery) were examined in more detail. RESULTS: Medical school differences are stable across time (median alpha = 0.835). The 50 measures were highly correlated, 395 (32.2%) of 1225 correlations being significant with p < 0.05, and 201 (16.4%) reached a Tukey-adjusted criterion of p < 0.0025. Problem-based learning (PBL) schools differ on many measures, including lower performance on postgraduate assessments. While these are in part explained by lower entry grades, a surprising finding is that schools such as PBL schools which reported greater student satisfaction with feedback also showed lower performance at postgraduate examinations. More medical school teaching of psychiatry, surgery and anaesthetics did not result in more specialist trainees. Schools that taught more general practice did have more graduates entering GP training, but those graduates performed less well in MRCGP examinations, the negative correlation resulting from numbers of GP trainees and exam outcomes being affected both by non-traditional teaching and by greater historical production of GPs. Postgraduate exam outcomes were also higher in schools with more self-regulated learning, but lower in larger medical schools. A path model for 29 measures found a complex causal nexus, most measures causing or being caused by other measures. Postgraduate exam performance was influenced by earlier attainment, at entry to Foundation and entry to medical school (the so-called academic backbone), and by self-regulated learning. Foundation measures of satisfaction, including preparedness, had no subsequent influence on outcomes. Fitness to practise issues were more frequent in schools producing more male graduates and more GPs. CONCLUSIONS: Medical schools differ in large numbers of ways that are causally interconnected. Differences between schools in postgraduate examination performance, training problems and GMC sanctions have important implications for the quality of patient care and patient safety
- …
