684 research outputs found

    Evolutionary dynamics of the most populated genotype on rugged fitness landscapes

    Full text link
    We consider an asexual population evolving on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local optima. We track the most populated genotype as it changes when the population jumps from a fitness peak to a better one during the process of adaptation. This is done using the dynamics of the shell model which is a simplified version of the quasispecies model for infinite populations and standard Wright-Fisher dynamics for large finite populations. We show that the population fraction of a genotype obtained within the quasispecies model and the shell model match for fit genotypes and at short times, but the dynamics of the two models are identical for questions related to the most populated genotype. We calculate exactly several properties of the jumps in infinite populations some of which were obtained numerically in previous works. We also present our preliminary simulation results for finite populations. In particular, we measure the jump distribution in time and find that it decays as t−2t^{-2} as in the quasispecies problem.Comment: Minor changes. To appear in Phys Rev

    IGRT After Prostatectomy: Evaluation of Corrective Shifts and Toxicity Using Online Cone Beam CT vs. Weekly Port Films for Target Localization

    Get PDF
    Purpose/Objective(s): Image guidance (IG) may permit higher radiotherapy (RT) doses (\u3e65 Gy) after radical prostatectomy (RP) without increased toxicity, with improved accuracy and smaller margins. Conebeam (CBCT) allows IGRT with volumetric images. This study evaluated CBCT shifts and toxicity after conformal IGRT, compared to RT with port films. American Society for Therapeutic Radiation Oncology (ASTRO) 52nd Annual Meeting October 31 - November 4, San Diego, C

    Evolutionary trajectories in rugged fitness landscapes

    Full text link
    We consider the evolutionary trajectories traced out by an infinite population undergoing mutation-selection dynamics in static, uncorrelated random fitness landscapes. Starting from the population that consists of a single genotype, the most populated genotype \textit{jumps} from a local fitness maximum to another and eventually reaches the global maximum. We use a strong selection limit, which reduces the dynamics beyond the first time step to the competition between independent mutant subpopulations, to study the dynamics of this model and of a simpler one-dimensional model which ignores the geometry of the sequence space. We find that the fit genotypes that appear along a trajectory are a subset of suitably defined fitness \textit{records}, and exploit several results from the record theory for non-identically distributed random variables. The genotypes that contribute to the trajectory are those records that are not \textit{bypassed} by superior records arising further away from the initial population. Several conjectures concerning the statistics of bypassing are extracted from numerical simulations. In particular, for the one-dimensional model, we propose a simple relation between the bypassing probability and the dynamic exponent which describes the scaling of the typical evolution time with genome size. The latter can be determined exactly in terms of the extremal properties of the fitness distribution.Comment: Figures in color; minor revisions in tex

    Branching Processes and Evolution at the Ends of a Food Chain

    Full text link
    In a critically self--organized model of punctuated equilibrium, boundaries determine peculiar scaling of the size distribution of evolutionary avalanches. This is derived by an inhomogeneous generalization of standard branching processes, extending previous mean field descriptions and yielding ν=1/2\nu=1/2 together with τ′=7/4\tau'=7/4, as distribution exponent of avalanches starting from species at the ends of a food chain. For the nearest neighbor chain one obtains numerically τ′=1.25±0.01\tau'=1.25 \pm 0.01, and τfirst′=1.35±0.01\tau'_{first}=1.35 \pm 0.01 for the first return times of activity, again distinct from bulk exponents.Comment: REVTex file, 12 pages, 2 figures in eps-files uuencoded, psfig.st

    The Roots of Diversity: Below Ground Species Richness and Rooting Distributions in a Tropical Forest Revealed by DNA Barcodes and Inverse Modeling

    Get PDF
    F. Andrew Jones is with the Smithsonian Tropical Research Institute, David L. Erickson is with the Smithsonian Institution, Moises A. Bernal is with the Smithsonian Tropical Research Institute and UT Austin, Eldredge Bermingham is with the Smithsonian Tropical Research Institute, W. John Kress is with the Smithsonian Institution, Edward Allen Herre is with the Smithsonian Tropical Research Institute, Helene C. Muller-Landau is with the Smithsonian Tropical Research Institute, Benjamin L. Turner is with the Smithsonian Tropical Research Institute.Background -- Plants interact with each other, nutrients, and microbial communities in soils through extensive root networks. Understanding these below ground interactions has been difficult in natural systems, particularly those with high plant species diversity where morphological identification of fine roots is difficult. We combine DNA-based root identification with a DNA barcode database and above ground stem locations in a floristically diverse lowland tropical wet forest on Barro Colorado Island, Panama, where all trees and lianas >1 cm diameter have been mapped to investigate richness patterns below ground and model rooting distributions. Methodology/Principal Findings -- DNA barcode loci, particularly the cpDNA locus trnH-psba, can be used to identify fine and small coarse roots to species. We recovered 33 species of roots from 117 fragments sequenced from 12 soil cores. Despite limited sampling, we recovered a high proportion of the known species in the focal hectare, representing approximately 14% of the measured woody plant richness. This high value is emphasized by the fact that we would need to sample on average 13 m2 at the seedling layer and 45 m2 for woody plants >1 cm diameter to obtain the same number of species above ground. Results from inverse models parameterized with the locations and sizes of adults and the species identifications of roots and sampling locations indicates a high potential for distal underground interactions among plants. Conclusions -- DNA barcoding techniques coupled with modeling approaches should be broadly applicable to studying root distributions in any mapped vegetation plot. We discuss the implications of our results and outline how second-generation sequencing technology and environmental sampling can be combined to increase our understanding of how root distributions influence the potential for plant interactions in natural ecosystems.FAJ acknowledges the support of a Tupper postdoctoral fellowship in tropical biology and the National Science Foundation (DEB 0453665). Funding was provided by the Smithsonian Institution Global Earth Observatory, the Smithsonian Tropical Research Institute/Center for Tropical Forest Sciences endowment fund, and the Smithsonian Tropical Research Institute/Frank Levinson fund. We would like to thank Autoridad Nacional del Ambiente and the Smithsonian Tropical Research Institute for processing research permits. We thank S. Hubbell and R. Condit for access to plot data, S. Schnitzer for liana census data (NSF DEB 0613666), and L. Comita and S. Hubbell for access to seedling data (NSF DEB 0075102 and DEB 0823728). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Marine Scienc

    A horseshoe crab (Arthropoda: Chelicerata: Xiphosura) from the Lower Devonian (Lochkovian) of Yunnan, China

    Get PDF
    This is the publisher's version, also available electronically from http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8826898&fileId=S0016756812000891A single specimen of a new species of the synziphosurine Kasibelinurus Pickett, 1993 is described from the Lower Devonian (Lochkovian) Xiaxishancun Formation of Yunnan Province, China. The new species, K. yueya sp. nov., extends the geographic extent of the family Kasibelinuridae from the Australian palaeocontinent to the South China palaeocontinent, and the stratigraphic range back some 50 Ma from Late to Early Devonian

    Comparing the hierarchy of keywords in on-line news portals

    Get PDF
    The tagging of on-line content with informative keywords is a widespread phenomenon from scientific article repositories through blogs to on-line news portals. In most of the cases, the tags on a given item are free words chosen by the authors independently. Therefore, relations among keywords in a collection of news items is unknown. However, in most cases the topics and concepts described by these keywords are forming a latent hierarchy, with the more general topics and categories at the top, and more specialised ones at the bottom. Here we apply a recent, cooccurrence-based tag hierarchy extraction method to sets of keywords obtained from four different on-line news portals. The resulting hierarchies show substantial differences not just in the topics rendered as important (being at the top of the hierarchy) or of less interest (categorised low in the hierarchy), but also in the underlying network structure. This reveals discrepancies between the plausible keyword association frameworks in the studied news portals

    Au+Au Reactions at the AGS: Experiments E866 and E917

    Full text link
    Particle production and correlation functions from Au+Au reactions have been measured as a function of both beam energy (2-10.7AGeV) and impact parameter. These results are used to probe the dynamics of heavy-ion reactions, confront hadronic models over a wide range of conditions and to search for the onset of new phenomena.Comment: 12 pages, 14 figures, Talk presented at Quark Matter '9
    • …
    corecore