155 research outputs found

    Intercorrências em aulas de natação para um indivíduo com transtorno do espectro autista

    Get PDF
    TCC (Graduação) - Universidade Federal de Santa Catarina. Centro de Desportos. Educação Física - Bacharelado.O transtorno do espectro autista (TEA) é classificado como um transtorno do desenvolvimento, sendo caracterizado por prejuízos na comunicação social e padrões repetitivos e restritos de comportamentos e interesses (DSM-V). Através da natação o aluno com TEA pode se beneficiar de uma melhora no desenvolvimento da linguagem, interação social e comportamentos adaptativos. É importante destacar que este estudo faz parte de um programa de atendimento à pessoa com TEA, modalidade natação, que consta das seguintes etapas: 1- Chegada ao vestiário (preparação para a atividade); 2 - Atividade propriamente dita; 3 - Vestiário. O objetivo deste estudo foi verificar as modificações ocorridas no planejamento para a execução das atividades ministradas, os comportamentos sociais e as habilidades aquáticas desenvolvidas por um jovem adulto com TEA durante um programa de intervenção. Esta pesquisa caracteriza-se como um estudo de caso descritivo, o participante foi uma pessoa de 32 anos com TEA, nível 3 (DSM-V, 2014). Foram planejadas e ministradas 16 aulas, organizadas seguindo os parâmetros regulares para o ensino de natação, com progressão desde a flutuação até a propulsão e ensino dos estilos crawl e costas. As atividades ocorreram durante nove semanas, duas vezes por semana com duração de 45 minutos. Para a coleta de dados foram utilizadas notas de campo, realizadas sistematicamente após o término da aula. Foram analisados os planos de aula planejados e executados considerando as intercorrências que geraram modificações. Foram estabelecidas para análise as seguintes categorias: chegadas/repetições, atividades e ordem de atividades. Bem como as relações entre as categorias. Em todas as 16 aulas ocorreram modificações: 15 aulas foram nas chegadas/repetições, 09 aulas nas atividades, e duas aulas na ordem das atividades. Os motivos que fizeram com que houvesse modificações no planejamento foram: cansaço, desatenção, falta de interesse, temperatura do ambiente/água, tempo de aula, dificuldades na condução física, comportamentos agressivos e se a raia era compartilhada ou não. Quanto ao comportamento social observamos que eles interferiram no planejamento e execução das atividades e, em relação as habilidades aquáticas observou-se que não houve modificação em relação a primeira avaliação

    Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation

    Get PDF
    BACKGROUND: The increased production of nanomaterials has caused a corresponding increase in concern about human exposures in consumer and occupational settings. Studies in rodents have evaluated dose–response relationships following respiratory tract (RT) delivery of nanoparticles (NPs) in order to identify potential hazards. However, these studies often use bolus methods that deliver NPs at high dose rates that do not reflect real world exposures and do not measure the actual deposited dose of NPs. We hypothesize that the delivered dose rate is a key determinant of the inflammatory response in the RT when the deposited dose is constant. METHODS: F-344 rats were exposed to the same deposited doses of titanium dioxide (TiO(2)) NPs by single or repeated high dose rate intratracheal instillation or low dose rate whole body aerosol inhalation. Controls were exposed to saline or filtered air. Bronchoalveolar lavage fluid (BALF) neutrophils, biochemical parameters and inflammatory mediator release were quantified 4, 8, and 24 hr and 7 days after exposure. RESULTS: Although the initial lung burdens of TiO(2) were the same between the two methods, instillation resulted in greater short term retention than inhalation. There was a statistically significant increase in BALF neutrophils at 4, 8 and 24 hr after the single high dose TiO(2) instillation compared to saline controls and to TiO(2) inhalation, whereas TiO(2) inhalation resulted in a modest, yet significant, increase in BALF neutrophils 24 hr after exposure. The acute inflammatory response following instillation was driven primarily by monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, mainly within the lung. Increases in heme oxygenase-1 in the lung were also higher following instillation than inhalation. TiO(2) inhalation resulted in few time dependent changes in the inflammatory mediator release. The single low dose and repeated exposure scenarios had similar BALF cellular and mediator response trends, although the responses for single exposures were more robust. CONCLUSIONS: High dose rate NP delivery elicits significantly greater inflammation compared to low dose rate delivery. Although high dose rate methods can be used for quantitative ranking of NP hazards, these data caution against their use for quantitative risk assessment

    Open Access

    Get PDF
    Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammatio

    From Dose to Response: In Vivo Nanoparticle Processing and Potential Toxicity

    Get PDF
    Adverse human health impacts due to occupational and environmental exposures to manufactured nanoparticles are of concern and pose a potential threat to the continued industrial use and integration of nanomaterials into commercial products. This chapter addresses the inter-relationship between dose and response and will elucidate on how the dynamic chemical and physical transformation and breakdown of the nanoparticles at the cellular and subcellular levels can lead to the in vivo formation of new reaction products. The dose-response relationship is complicated by the continuous physicochemical transformations in the nanoparticles induced by the dynamics of the biological system, where dose, bio-processing, and response are related in a non-linear manner. Nanoscale alterations are monitored using high-resolution imaging combined with in situ elemental analysis and emphasis is placed on the importance of the precision of characterization. The result is an in-depth understanding of the starting particles, the particle transformation in a biological environment, and the physiological response

    Interlaboratory Evaluation of Rodent Pulmonary Responses to Engineered Nanomaterials: The NIEHS Nano GO Consortium

    Get PDF
    Background: Engineered nanomaterials (ENMs) have potential benefits, but they also present safety concerns for human health. Interlaboratory studies in rodents using standardized protocols are needed to assess ENM toxicity. Methods: Four laboratories evaluated lung responses in C57BL/6 mice to ENMs delivered by oropharyngeal aspiration (OPA), and three labs evaluated Sprague-Dawley (SD) or Fisher 344 (F344) rats following intratracheal instillation (IT). ENMs tested included three forms of titanium dioxide (TiO2) [anatase/rutile spheres (TiO2-P25), anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NBs)] and three forms of multiwalled carbon nanotubes (MWCNTs) [original (O), purified (P), and carboxylic acid “functionalized� (F)]. One day after treatment, bronchoalveolar lavage fluid was collected to determine differential cell counts, lactate dehydrogenase (LDH), and protein. Lungs were fixed for histopathology. Responses were also examined at 7 days (TiO2 forms) and 21 days (MWCNTs) after treatment. Results: TiO2-A, TiO2-P25, and TiO2-NB caused significant neutrophilia in mice at 1 day in three of four labs. TiO2-NB caused neutrophilia in rats at 1 day in two of three labs, and TiO2-P25 and TiO2-A had no significant effect in any of the labs. Inflammation induced by TiO2 in mice and rats resolved by day 7. All MWCNT types caused neutrophilia at 1 day in three of four mouse labs and in all rat labs. Three of four labs observed similar histopathology to O-MWCNTs and TiO2-NBs in mice. Conclusions: ENMs produced similar patterns of neutrophilia and pathology in rats and mice. Although interlaboratory variability was found in the degree of neutrophilia caused by the three types of TiO2 nanoparticles, similar findings of relative potency for the three types of MWCNTs were found across all laboratories, thus providing greater confidence in these interlaboratory comparisons

    Translocation of Inhaled Ultrafine Manganese Oxide Particles to the Central Nervous System

    Get PDF
    BACKGROUND: Studies in monkeys with intranasally instilled gold ultrafine particles (UFPs; < 100 nm) and in rats with inhaled carbon UFPs suggested that solid UFPs deposited in the nose travel along the olfactory nerve to the olfactory bulb. METHODS: To determine if olfactory translocation occurs for other solid metal UFPs and assess potential health effects, we exposed groups of rats to manganese (Mn) oxide UFPs (30 nm; ~ 500 μg/m(3)) with either both nostrils patent or the right nostril occluded. We analyzed Mn in lung, liver, olfactory bulb, and other brain regions, and we performed gene and protein analyses. RESULTS: After 12 days of exposure with both nostrils patent, Mn concentrations in the olfactory bulb increased 3.5-fold, whereas lung Mn concentrations doubled; there were also increases in striatum, frontal cortex, and cerebellum. Lung lavage analysis showed no indications of lung inflammation, whereas increases in olfactory bulb tumor necrosis factor-α mRNA (~ 8-fold) and protein (~ 30-fold) were found after 11 days of exposure and, to a lesser degree, in other brain regions with increased Mn levels. Macrophage inflammatory protein-2, glial fibrillary acidic protein, and neuronal cell adhesion molecule mRNA were also increased in olfactory bulb. With the right nostril occluded for a 2-day exposure, Mn accumulated only in the left olfactory bulb. Solubilization of the Mn oxide UFPs was < 1.5% per day. CONCLUSIONS: We conclude that the olfactory neuronal pathway is efficient for translocating inhaled Mn oxide as solid UFPs to the central nervous system and that this can result in inflammatory changes. We suggest that despite differences between human and rodent olfactory systems, this pathway is relevant in humans

    The Impact of COVID-19 on Perceived Barriers and Facilitators to the Healthfulness of Communities With Low-Income

    Get PDF
    Background: The COVID-19 pandemic brought new challenges affecting the wellbeing of individuals in communities with low income. Understanding where people live and how those environments can facilitate or hinder living a healthy lifestyle is essential for developing interventions that target behavior change and health promotion. Objective: This study compares Extension Nutrition Educators’ (NEs) perceptions of the barriers and facilitators impacting the healthfulness of the environment of communities with low income in eleven states before and during the COVID-19 pandemic

    A single cell characterisation of human embryogenesis identifies pluripotency transitions and putative anterior hypoblast centre.

    Get PDF
    Following implantation, the human embryo undergoes major morphogenetic transformations that establish the future body plan. While the molecular events underpinning this process are established in mice, they remain unknown in humans. Here we characterise key events of human embryo morphogenesis, in the period between implantation and gastrulation, using single-cell analyses and functional studies. First, the embryonic epiblast cells transition through different pluripotent states and act as a source of FGF signals that ensure proliferation of both embryonic and extra-embryonic tissues. In a subset of embryos, we identify a group of asymmetrically positioned extra-embryonic hypoblast cells expressing inhibitors of BMP, NODAL and WNT signalling pathways. We suggest that this group of cells can act as the anterior singalling centre to pattern the epiblast. These results provide insights into pluripotency state transitions, the role of FGF signalling and the specification of anterior-posterior axis during human embryo development
    corecore