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Abstract

Adverse human health impacts due to occupational and environmental exposures to manufactured 

nanoparticles are of concern and pose a potential threat to the continued industrial use and 

integration of nanomaterials into commercial products. This chapter addresses the inter-

relationship between dose and response and will elucidate on how the dynamic chemical and 

physical transformation and breakdown of the nanoparticles at the cellular and subcellular levels 

can lead to the in vivo formation of new reaction products. The dose-response relationship is 

complicated by the continuous physicochemical transformations in the nanoparticles induced by 

the dynamics of the biological system, where dose, bio-processing, and response are related in a 
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non-linear manner. Nanoscale alterations are monitored using high-resolution imaging combined 

with in situ elemental analysis and emphasis is placed on the importance of the precision of 

characterization. The result is an in-depth understanding of the starting particles, the particle 

transformation in a biological environment, and the physiological response.
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4.1 Introduction

Nanotechnology is a key modernization driver that balances innovations in material 

synthesis with the need for novel solutions that impact all energy sectors, emerging medical 

fields, and rapidly evolving electronics applications [3]. It also offers environmental 

technology breakthroughs by integrating nanotechnology products and synthetic biology and 

offers opportunities that focus on human health and animal welfare. The field of 

nanomaterials is a multidisciplinary area in which material science is explored at the nano-

scale, but the concepts behind nanoscience are not new. In his celebrated lecture at Caltech, 

in 1959, physicist Richard Feynman described the process of manipulating and controlling 

individual atoms, molecules and nanoparticles, and he anticipated an “enormous number of 

technical applications” through the creation of novel materials and compounds [22, 76, 78]. 

More than half a century later, scientists and engineers are finding various ways to produce a 

wide range of nanoparticles [1]. Importantly, the fast exploration and deployment of 

nanomaterials must also incorporate exposure, toxicity and risk assessment studies in order 

to balance the successful integration of nanomaterials into everyday life with any potential 

safety and environmental issues [7, 17, 18, 48, 58, 69, 72, 78]. This is critically important in 

determining which parts of life may be enriched with the assistance of nanomaterials and 

which parts may suffer.

Manufactured nanoparticles (MNPs) typically range in size from 1–100 nm [23]. They 

exhibit unique properties compared with those of their larger-sized “macro” counterparts. 

The differences are due to vastly increased surface-to-bulk ratios and because of the distinct 

structures of MNPs [13, 27, 80, 88]. Nanotechnology and the application of nanoparticles in 

consumer products has become an integral part of today’s life and require safety assessments 

[4, 12, 20, 27, 32, 34, 50, 59, 66, 73]. The growing rate of nanoparticle-based product 

developments has raised worldwide apprehension regarding the release of MNPs into the 

environment and their subsequent uptake. There are several uptake pathways for MNPs, 

which complicates the issue of modelling exposure risks tremendously [5, 15, 30, 40, 54, 60, 

83]. Nano-safety studies have seen an exponential rise over the past two decades, but the 

effects and dangers of nanoparticles, either for animals, humans, or cell structures, are still 

not clearly defined [10, 43]. Safety concerns have led industrial and academic researchers to 

adopt strategies to make MNPs more biocompatible, by employing techniques such as 

capping with various functional groups and also by exploring new synthesis routes [64], but 

the ultimate fate of the MNPs after uptake remains unresolved [28, 56, 85]. This is, in part, 

heightened by additional effects from nanoparticles that come from sources other than 

Graham et al. Page 2

Adv Exp Med Biol. Author manuscript; available in PMC 2019 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



controlled manufacturing labs, such as pollution-derived nanoparticles where the 

composition, size ranges and effects are often unknown. Another important issue is the 

environmental significance of natural colloids and nanoparticles that govern elemental 

mobility and bio-availability [33], where much of the environmental pool of nanoparticles 

consists of breakdown products from both organic and inorganic sources such as cellulose 

fragments and clays that may be in the same size range as MNPs. There is also the influx of 

pollution-derived nanoparticles produced in urban settings from industrial effluents and auto 

exhausts, which are an important part of risk assessment models and have been linked to 

major health problems [11, 19, 88].

Adverse human health effects due to occupational and also environmental exposures to 

nanoparticles are of worldwide concern. Concepts of nanoparticle dose metric and response 

metric are of paramount importance [42, 43] and can provide key insights into relationships 

between the nanoparticles’ synthetic identity and chemical reactivity, their biological activity 

which involves aggregation, protein interactions, protective surface coatings as well as 

migration and, lastly, their stability, all of which contribute individually and collectively to 

dose-dependent toxicity outcomes [79]. An in-depth understanding of biokinetics is vital to 

obtaining meaningful risk assessment protocols for MNPs [71, 78, 87]. This has to include 

information on the biodistribution and clearance of MNPs as a function of the exposure 

route [43]. Furthermore, it has to include information on uptake, transport and 

transformation of MNPs as a function of dose and epithelial route of entry (including but not 

limited to gastro-intestinal, dermal and respiratory ports-of-entry). It also requires thorough 

data collection on the biotransformation of MNPs within target tissues and cells [27]. The 

cellular and subcellular interactions of nanoparticles are a function of the physiological 

environment which can only respond to a certain number of invader nanoparticles or reactive 

surface area (smaller nanoparticles contribute higher surface areas and in this regard, also 

contribute different surface properties such as charge, composition, structures, porosity, 

redox-state and reactivity). This is sometimes referred to as the “surface area dose-response 

relationship” [61] and affects the short and long term fate of nanoparticles after uptake. Dose 

and nanoparticle properties (nano-design) will undoubtedly influence the transport and 

bioprocessing (in vivo effect) of the MNPs and their derivatives (break-down products) 

which leads to a dose-dependent reactivity and physiological response (nanotoxicity) (Fig. 

4.1).

A dose-dependent instability of synthesized MNPs after exposure and cellular uptake leads 

to in vivo processing and transformation, which may be followed by a certain response 

(oxidative stress and inflammation) and ultimately results in nanotoxicity (Fig. 4.1). Clearly, 

a nanoscale substance might potentially be toxic for a biological system when the “dose” or 

concentration exceeds an adverse threshold. The response “effect” could be initiated by a 

single “acute” dose, or, by repeated low “chronic” dose that occurs over an extended time 

frame. Careful dose evaluations are necessary for meaningful risk assessments of 

nanoparticles and play a major role in regulatory processes to help determine health-relevant 

limits [43]. For example, instillation studies are typically carried out with high MNPs doses 

and it is impossible to know whether effects are caused by overload conditions or due to the 

MNPs’ inherent effects. Inhalation studies can offer insights at lower dose, yet they too are 

met with inflammatory responses which have been determined more often than not to be 
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independent of the nature of MNPs that are inhaled [43, 88]. Because of these difficulties in 

dose-response studies, the mechanisms that induce toxicity from respiratory exposures are 

poorly understood and thus hinder the building of predictive models. Similarly, low dose 

response studies for MNP exposures to skin and gastrointestinal epithelial tissues are lacking 

as is our understanding of how differences in the local biological milieu effects 

microenvironment around a nanoparticle and vice-versa.

4.1.1 In Vivo Processing and Transformation of Nanoparticles

The issue that will be addressed in this chapter is the relationship between dose and potential 

in vivo processing of nanoparticles (response) shown in Fig. 4.1. The issue includes 

nanoparticle uptake, transport and transformation as a function of dose and uptake routes. In 
vivo processing is defined here as the dynamic chemical and/or physical breakdown of 

nanoparticles at the cellular and subcellular level [27]. The process can be followed by in 
vivo formation of new reaction products including ions, nuclei and growth of second 

generation nanoparticles all of which may be set in motion by the breakdown of the original 

nanomaterials. Such in vivo biotransformation processes are known to occur with implanted 

orthopedic materials that can lead to both pathologic and beneficial patient outcomes. For 

example, nanoparticle wear debris formed from articulating prosthetic surfaces can lead to 

osteolysis [29], whereas the successful adherence and osteoinduction of amorphous 

bioactive glass results from a dissolution and re-precipitation reaction and induces a material 

phase change to crystalline hydroxyapatite [35, 39].

Uptake and transport of nanoparticles to different regions in the body have been extensively 

studied and are generally linked to certain pathology and toxicity [40, 43, 51, 52, 56, 61]. 

However, the in vivo breakdown and processing of MNPs that leads to formation of new 

reaction products with different properties is not very clear and obfuscates the issue of 

exposure risk and related outcomes. It also makes the design of meaningful predictive 

models significantly more challenging. The breakdown mechanism of MNPs in cells 

depends on the material composition, surface coatings, ports of entry and the organs they 

invade (Fig. 4.2). The instability of nanoparticles in cells then initiates another cascade of 

responses that yet have to be defined. In this Chapter, we describe applications of advanced 

electron microscopy methods to the analysis of fixed tissue sections, which provides critical 

information on material phase changes and the oxidation states of MNPs [27]. Specifically, 

we discuss use of high resolution (nanometer) transmission electron microscopy (HRTEM) 

coupled with simultaneous elemental analysis for the investigation of the in vivo processing 

of nanoparticles as a function of dose and uptake route (Fig. 4.2). The in vivo processing 

evidence can then be used for more comprehensive modelling of the potential exposure risks 

for nanoparticles. The goal of these studies is to investigate cellular and subcellular 

interactions of MNPs using advanced imaging and analysis of the retained particles and 

correlate these interactions with biological and toxicological effects. The data are important 

to build meaningful predictive models that are based on the dynamic interaction of 

nanoparticles at the cellular and subcellular levels after uptake. A thorough understanding of 

nanoparticle processing in biological systems as a function of dose is vital in making 

determinations of the long-term toxicological effects. This requires studies to determine in 
vivo solubility (nanoparticle dissolution), size and shape changes in response to the original 
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dose and nanoparticle retention time (Fig. 4.2). A possible increase or decrease in protein 

corona around the MNPs and their cell associations also must be examined [14, 25]. In vivo 
processing of MNPs is a function of dose and residence time in particular tissues or cells. 

The in vivo processed nanoparticles and any “newly” formed phases and reaction products 

must be compared with the original MNPs (Fig. 4.2). The nanoparticle’s characteristic 

“fingerprints” before and after in vivo processing are based on composition, geo metrical 

parameters and physiochemical, structural and spectroscopic properties. Without this data, it 

would be impossible to build meaningful models that correlate nanoparticle dose and 

exposure risks. However, a deep understanding of biokinetics is also central to obtain an all-

encompassing exposure risk assessment and involves identification of target organs 

following different routes of exposure. One has to evaluate the in vivo processing of MNPs 

not only in the regions where uptake first occurs (portal-of-entry-organs), but also must 

observe any particle breakdown or processing in secondary and further ancillary target 

tissues while considering the original dose and residence time of the particles. Often the 

experimental characterization of nanoparticles that is obtained before exposure is directly 

linked to cellular-based assays. This means that risk assessment models typically assume 

that the “invader” nanoparticles that cause toxicity are exactly the same as those that were 

used in the exposure experiments. Unfortunately that is an oversimplification. To date we 

know that nanoparticles are processed in vivo [28] and the extent to which they are 

processed needs to be systematically studied so that this information can be incorporated 

into advanced risk assessment models. Future studies will need to evaluate the in vivo 
processing of MNPs in portal-of entry organs and also in secondary target tissues and 

evaluate any modifications/transformations of MPNs with regards to their physicochemical 

changes as a function of the route and duration of exposure. Only then can predictive models 

be designed to better forecast nanoparticle-dose-toxicity relationships. State of the art 

microscopy methods can be applied to obtain needed in vivo processing data, and several 

examples of this approach are presented in the remainder of this Chapter.

4.2 The Role of Cellular Breakdown and In Vivo Processing of 

Nanoparticles

The study of in vivo induced changes to nanoparticles is an emerging area of investigation. 

In the case of highly soluble materials such as nano-copper and nano-silver any dissolution 

and particle breakdown after uptake into biological media can be expected and has been 

demonstrated [6]. However, the in vivo breakdown and transformation mechanisms of 

essentially poorly soluble particles (PSP) like ceria (CeO2) on a cellular and subcellular 

level are not well understood. The breakdown mechanism of CeO2 nanoparticles in the liver 

of rats was recently demonstrated for the first time [27]. These findings confirm that 

nanoparticle uptake and sequestration in peripheral organs can lead to the formation of 

secondary particles with different physiochemical properties including altered reactivity and 

effects that result in varying degrees of toxic effects over long periods of exposure. 

Furthermore, ceria in vivo transformation can progress to a toxic, more benign, or 

potentially beneficial state [32]. In this regard, CeO2 nanoparticles after prolonged residence 

time of 90 days inside liver undergo in vivo processing that causes a shift towards smaller 

particle size and an increased reactive surface area with enhanced free radical scavenging 
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potential of the new in vivo formed ultrafine particles [27]. This work also showed with the 

help of high resolution imaging and analysis that essentially insoluble CeO2 nanoparticles 

experience partial dissolution and reformation inside the liver. Breakdown and redistribution 

after inhalation of ceria nanoparticles could be a possible coping mechanism of biological 

systems and a step towards improving nanoparticle biocompatibility as illustrated in Fig. 4.3.

Because CeO2 is basically insoluble under laboratory controlled conditions, one has to 

question what drives dissolution of CeO2 and similar nanoparticles in the liver, lung and 

possibly other regions in vivo and whether enzyme activity and other factors need to be 

incorporated into risk assessment models. This is particularly important for more soluble 

nanoparticles such as amorphous silica (SiO2), alumina (Al2O3), titania (TiO2) and iron 

oxides (Fe2O3 and Fe3O4) which constitute the vast volumes of MNPs used today in 

consumer products and medical imaging. Faster dissolution rates could lead to rapid particle 

breakdown and transformation. Clearly, how to obtain insights into biotransformation routes 

of nanoparticles and their in vivo processing response depends on well-designed 

experimental studies that provide dose-controlled nanoparticle uptake, i.e., via instillation, 

inhalation (lung, olfactory system), oral intake (stomach, GI) or dermal uptake (skin: intact 

versus injured) (Fig. 4.2). This has to be followed by a systematic comparison of the in vivo 
transformed particles with the pristine precursor materials by examining morphological 

changes, size variations, dissolution patterns and the presence or absence of secondary 

reaction zones (new precipitates) in the vicinity of the transforming nanoparticles. Further 

detailing the physio-chemical changes during bioprocessing of nanoparticles may be an 

effective tool in understanding their subcellular and temporal fate that controls toxicity. 

These analyses depend on advanced imaging methods. High-resolution electron microscopy 

applications allow the use of fixed tissues to examine nanoparticle location, size and 

composition immediately after deposition and also after prolonged residence time. 

Nanoparticle-cell interaction and dose-dependent inflammatory response raises the question 

about underlying cellular mechanisms that produce nanoparticle instability (Fig. 4.2). 

Therefore, dose-dependent toxicity that is caused by in vivo processing of nanoparticles 

needs to be considered in risk assessment models. Also, it is important to model 

nanotoxicity as a function of the nanoparticle instability, transformation, mobility and 

potential in vivo reformation (precipitation) at the cellular and subcellular level. 

Nanoparticle instability in vivo is a function of the particle’s inherent composition, size, 

molecular structure and surface chemistry among other properties, but also a function of the 

complex cellular condition such as protein corona, inflammatory responses (chronic vs. 

acute), upregulation of inflammatory defense mechanisms and availability of enzymatic 

catalysts just to name some. Mobility of individual nanoparticles may be controlled by both 

physical transport of the intact particles, and also by a sequence of dissolution and 

reformation steps. High resolution analysis of the reaction zones around dissolving 

nanoparticles in phagolysosomes show breakdown patterns, void spaces and pore-formation, 

suggesting that there are continuous processes that release and relocate molecules during the 

nanoparticle transformation. This information is important in creating government 

regulations for nanoparticle exposure to workers and consumers. One very important aspect 

for obtaining nanoscale structural and chemical information to be able to study the 

breakdown and processing of MNPs, of course, is the preparation and conditioning of tissue 
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materials which precedes all of the advanced imaging and analysis techniques. We refer here 

to previous works that give excellent overviews of the tissue preparation techniques [49, 55, 

74].

The following sections will discuss the importance and application of advanced imaging 

methods to help identify the various processes involved during in vivo nanoparticle 

transformation and give three specific examples for: (1) high and low dose inhaled 

amorphous silica (SiO2) nanoparticles that are deposited, transformed and relocated inside 

rat lung; (2) ceria (CeO2) nanoparticle dispersion and in vivo processing in spleen after a 

single high dose instillation; and (3) discuss the spatial and temporal relationship of in vivo 
synthesized ferritin nanoparticles (iron oxy-hydroxide Fe-OOH) as a direct response to the 

uptake and processing of invader SiO2 and CeO2 nanoparticles, and suggest mechanisms at 

the cellular and subcellular levels.

4.3 Advanced Imaging and Analysis of Nanoparticles in Tissue Sections

The study of nanoparticle in vivo processing is compounded by the number of variables in 

play when it comes to biotransformation, such as composition, morphology, size, and 

exposure mechanism or route of entry. The situation is made even more complex for 

researchers in that specialized methods of investigation are required to observe nanoparticle 

transformations in biological systems. Typical methods employed in biological research can 

only partly reveal nanoparticle transformations or information about the mechanisms 

involved due to the small size range. These methods include fluorescence, confocal, and 

polarized microscopy, electron micro-graphs, radiological tracing, and measurements of 

biological toxic response indicators. Traditional material characterization methods used by 

material engineers/scientists need to be employed that allow resolution and analysis at the 

nanoscale. Methods that have been employed so far are the standard electron microscopy 

techniques used in materials characterization such as, electron diffraction [2, 27, 46], and 

scanning transmission electron microscopy (STEM) [81] with the associated analytical 

techniques energy dispersion spectroscopy (EDS) [36, 84], and electron energy loss 

spectroscopy (EELS) [16, 26, 80]. Also, x-ray photoelectron spectroscopy (XPS) has been 

used [27]. Aberration corrected STEM allows imaging at the atomic scale and will be 

instrumental in determining the structures and composition of in vivo formed nanoparticles 

that are only a few nanometers or possibly sub-nano size [57]. The use of these methods is 

complicated by the nanoparticles being hosted inside a biological matrix. This requires 

modifications to the standard biological sample preparation techniques [49, 55, 74].

4.3.1 High Resolution Analytical Microscopy

Electron microscopy has been fundamental in gaining knowledge about biological systems 

since the 1950’s and was instrumental in developing insights into cellular ultrastructure [21]. 

As electron microscopes evolved, the imaging needs of the biologist and that of material 

scientist diverged. The biologist needed high contrast, wide field, and low accelerating 

voltages, whereas the material scientist needed high resolution imaging, high accelerating 

voltages, and high brightness through the use of a field emission electron source. This 

resulted in differing classes of electron microscopes being manufactured such as the Philips 
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201 and CM-10 for biological applications versus the Philips 300, 400, and CM-12 for 

material characterization. This has resulted in major medical research centers having 

biologically oriented electron microscopes with an inability to apply what are now common 

material characterization techniques. Multidisciplinary collaborations between medical 

researchers and material scientists can overcome this. High-resolution transmission electron 

microscopy (HRTEM), coupled with advanced detectors allows one to probe materials in 

unprecedented detail, providing both local chemical information and also structural 

properties.

An analytical electron microscope today can image and obtain compositional and electronic 

information down to the angstrom level. This ability provides highly local information from 

surface-environment interactions such as in vivo nanoparticles. Other material 

characterization techniques work for bulk samples and have resolutions larger than several 

nanometers. Thus, for the study of in vivo transformation of nanoparticles there is only one 

choice, an HRTEM designed for materials analysis [28, 84]. A typical HRTEM used in 

materials characterization will have both TEM and STEM capability with EDS and EELS 

being incorporated with the use of computer technology to allow the acquisition of 

elemental line profiles and maps acquired in STEM mode. This allows not only elemental 

analysis but also acquisition of material phase changes and oxidative states via the EELS 

data [16, 53]. Combining these observations with material phase databases such as the 

Materials Project (www.materialsproject.org) and computation from first principles using 

spectroscopy oriented software such as FEFF9 [67] in principle, allows the identification of 

phases and electronic states. Because a standard non-aberration corrected field emission 

electron microscope designed for materials analysis will typically be able to achieve a 

STEM spot size of 0.2 nm, changes in nanoparticle surfaces versus their main bodies can be 

analyzed [27]. This data combined with material phase structure data and spectroscopy 

computation can, in principle, provide information on structural and electronic changes in 

nanoparticles in tissue. This is the type of information needed to understand the interaction 

of a nanoparticle with its local environment in order to gain an understanding of the 

mechanisms behind in vivo transformation and how this relates to toxicity.

4.3.2 Example I: Amorphous Silica (SiO2) Inside Lung Tissue

Analysis of the clearance kinetics using modelling of retained lung burden of SiO2-MNPs 

showed a significant in vivo solubility which raises questions about underlying cellular 

mechanisms that result in the instability of the SiO2-MNPs and related toxicity [24]. This 

was the stimulus to use HRTEM applications and to look for evidence of particle breakdown 

and mobility in the lung tissue at both cellular and subcellular levels. The principal objective 

for HRTEM is to examine any nano-scale alteration, dissolution and processing of SiO2-

MNPs after inhalation by comparing the translocated particles with the precursor SiO2-

MNPs. A dose and time controlled inhalation study involved groups of rats that were 

exposed to aerosols containing amorphous SiO2-MNPs for 4 h/day, 5 days/week for 4 weeks 

with a 27 day post-exposure observation period at three different concentrations and dose-

dependent pulmonary inflammation in the rats, and data was collected in relation to the 

exposure time and corresponding dose that was used [62]. In this particular study, sub-

chronic inhalation exposures of the SiO2-MNPs were investigated using an approach of 
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dosimetric modelling to determine the mechanisms for clearance of these nanoparticles from 

the lung. Both mechanical clearance and partial dissolution have to be considered as 

potential pathways. Determining the in vivo bioprocessing mechanisms of the nanoparticles 

will be important towards risk characterization and to better assess possible health effects 

caused by the transformation, translocation and clearance of the particles after exposure. The 

HRTEM observation of the precursor (as synthesized) SiO2-MNPs particles showed a 

typical size of ~20–50 nm with a corresponding spherical morphology of the individual 

aerosolized SiO2-MNPs components (Fig. 4.4). Furthermore, after 27 days post-exposure 

the phagocytosed SiO2-MNPs that were sequestered in alveolar macrophages in the fixed 

tissue sections were imaged using high resolution Dark Field STEM. The STEM images 

show clear indication of significant in vivo breakdown and transformation (Fig. 4.5). There 

is also structural evidence in the Dark Field STEM (Fig. 4.5) that a portion of SiO2-MNPs 

had been completely dissolved out. The degree of in vivo processing of the particles and 

partial dissolution most likely depends on the residence time, dose, and synthetic identity of 

the original inhaled SiO2-MNPs. Most of the SiO2-MNPs particles lost their original 

spherical morphology after prolonged lung retention and are now displaying various 

dissolution patterns (pitting), void formation and secondary outward growth that results in 

the formation of multiple reaction zones. To gain greater insights into what controls particle 

transformation and determine if there are any relationships with subcellular components, one 

has to perform detailed elemental mapping of the regions of interest. As an example, 

elemental EDS maps of O, Si, S and P (Fig. 4.6) are obtained from a region that is illustrated 

in the Dark Field STEM image in Fig. 4.5. The EDS elemental maps of O, Si, S, and P 

require the use of a 1 nm STEM probe to have enough counting statistics within a reasonable 

dwell time as illustrated in (Fig. 4.6).

Typically a 1–2 s dwell time is used depending on the signal strength. EELS mapping can be 

done with a 0.2 nm probe and dwell times as small as 0.1 second, depending on the 

elemental edge being mapped. Higher edges require longer dwell times. When doing 

simultaneous EDS and EELS mapping a compromise must be worked out to have a long 

enough time for a good EDS count and short enough so as not to overload the EELS CCD 

detector [27]. Other EELS acquisition parameters such as dispersion and y-binning can be 

adjusted to obtain a satisfactory EELS signal [16, 26]. After performing EDS mapping of a 

region that seems to have undergone in vivo processing of SiO2-MNPs in alveolar 

macrophages the O and Si signals clearly follow the outline of the SiO2-MNPs (Fig. 4.6). 

However, the Si signal furthermore is indicating that some Si is present in the close 

neighborhood of the SiO2-MNPs, while the O signal is predominantly confined to the 

outline of the alveolar macrophage-entrapped nanoparticles and not seen in the immediate 

subcellular surroundings. Some O may be present in –(Si-O-Si)- forming anionic silanol 

components within the tissue and this could be a critical mechanism for Si transport and new 

precipitates and studies are needed at the molecular level to determine the processes 

involved in Si mobility after processing of the MNPs. The elemental scans for S and P were 

included here to show that, surprisingly, the signals are shadowing the location of the SiO2-

MNPs. This opens chief questions for future work including queries into the underlying in 
vivo processing mechanisms that guide nanoparticle delivery to certain cellular and 

subcellular locations and chemical environments after uptake and also how this may be 
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affected by dose. The dose variations (high vs. low) all resulted in significant in vivo 
processing of the SiO2-MNPs after inhalation which probably is based on the relatively high 

solubility of amorphous silica [9, 24, 31]. Importantly, in vivo processing gives rise to 

second generation nanoparticles and reaction zones containing Si- phase within the vicinity 

of the bio-transformed SiO2-MNPs, which suggests that migration and relocation processes 

take place at the cellular and subcellular levels as determined in elemental mapping (Fig. 

4.6). Moreover, high resolution STEM coupled with EDS confirms that release of Si ions 

and relocation and precipitation of secondary Si- phases in the alveolar macrophages results 

in generation of Si-rich halos “Si-clouds” at the outskirts of partially dissolving SiO2-MNPs 

(Fig. 4.7). An analogous cloud-formation process was shown for the first time to take place 

when poorly soluble ceria (CeO2) nanoparticles bio-process in liver tissue [27].

Detailing all of the physio-chemical changes that take place during bioprocessing of SiO2-

MNPs in alveolar macrophages and other tissue locations as a function of dose is still under 

development. This may be an effective tool in understanding their subcellular and temporal 

fate and how this factors into controlling a toxic response after environmental uptake of 

nanoparticles. More work is needed to study the dose effects on the extent of SiO2-MNPs 

breakdown and the relocation of Si as a function of saturation levels. An example of further 

detailing the chemical and structural content of the Si-Cloud contents is shown in the Dark 

Field STEM images that demonstrate a greater extent of in vivo processed SiO2-MNPs in 

the alveolar macrophage and the development of nanozone formation (Fig. 4.8). The 

chemical breakdown of the SiO2-MNPs (Zone I) leads to pitting in the original particles 

with subsequent material migration and relocation into satellite zones (Zone II in Fig. 4.8) 

which hosts much smaller particles that are highly dispersed. This is the reason why Zone II 

appears less dense and concentrated in the Dark Field STEM image. It will be of paramount 

importance to apply aberration corrected STEM and 3D– imaging to probe the chemical 

composition of the matrix of Zone II that engulfs the very small SiO2-MNPs. If Zone II 

matrix is chemically distinct from other nanoparticle- free regions in the alveolar 

macrophage that hosts the SiO2-MNPs it can help determine if protein formation or 

encapsulation helps stabilize the SiO2-MNPs and make them more biocompatible after in 
vivo processing.

The examples above show that in vivo processing of nanoparticles can occur and that a 

materials-oriented electron microscope can reveal some aspects of the changes that are 

occurring. This coupled with toxicological response monitoring could provide information 

as to whether nanoparticle dose-dependent changes reduce or increase toxic effects. Much 

work remains to be done in determining the in vivo properties of the many different types of 

nanoparticles and how variables such as particle morphology, size, surface treatments, and 

composition effect in vivo processing. The application of aberration corrected electron 

microscopes to the study of in vivo processing would most likely be very fruitful [65, 86]. 

These microscopes have the resolution to determine if a cloud surrounding a nanoparticle is 

composed of single molecules or very small clusters as in the silica examples above. It could 

also determine if the composition of such clusters is that of the precursor particle or if a 

reaction has occurred thereby modifying the clusters and resulted in new compounds. In 

addition aberration-corrected STEM could provide high resolution maps of the surface 

layers of nanoparticles and corresponding surrounding tissue to better understand the 
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mechanisms behind in vivo processing. Importantly, aberration-corrected electron optical 

sectioning can give insights into any potential protein corona formation at the exterior of the 

nanoparticles. Recently, RAMAN mapping has also become commercially available. This 

opens the possibility of identifying molecular changes in the tissue surrounding 

nanoparticles in vivo as a function of dose.

4.3.3 Example II: Ceria (CeO2) Nanoparticles Inside Spleen Tissue

EELS analysis was performed on a 200 kV JEOL 2100F TEM/STEM and spectrum images 

were collected to investigate morphologies, size distribution and oxidation states of ceria 

nanoparticles (CeO2-MNPs) in rat spleen tissue. A therapeutic dose (4 g/kg) of ~15–20 nm 

CeO2-MNPs was used and instilled four times over a 2 week time period. The hydrothermal 

synthesis procedure for the CeO2-MNPs resulted in a narrow size range ~20 nm [47]. The 

particle surfaces were capped using a citrate coating (10 %) in 5 % aqueous dispersion. The 

(CeO2-MNPs) synthetic identity included size, surface charge (Zeta potential: −40 mV at pH 

7.3) and structural characterization using HRTEM/STEM analyses and EELS in the spleen 

tissue (Fig. 4.9).

Previously, the in vivo processing, transformation and subcellular effects of CeO2-MNPs in 

a rat model using a single high dose (85 mg/kg) was presented with corresponding effects on 

oxidative stress increases and decreases and internalized CeO2-MNPs were shown to cause 

distinct cellular responses and oxidative stress, but also presented significant in vivo 
processing which releases smaller CeO2-MNPs clouds with much improved ROS potential 

[27, 32]. Since CeO2-MNPs can do both generate and scavenge free radical oxygen species 

(ROS), it is important to distinguish CeO2-MNPs that contribute to either ROS production or 

ROS scavenging in subcellular levels [41]. Example II shows how ceria MNPs translocate to 

spleen tissue and in the spleen the original CeO2-MNPs produced Ce-clouds (Fig. 4.9). In 

this particular case a therapeutic dose (4 g/kg) of CeO2-MNPs not only bio- accumulated in 

spleen which can be demonstrated with the help of HRTEM and Dark Field STEM imaging, 

but the original ceria nanoparticles were also structurally altered and second generation 

plumes of ultra-fine (<3 nm) ceria nanoparticles formed close by, which can be seen as 

clouds next to the in vivo processed ceria precursors (Fig. 4.9). Corresponding EELS 

analyses along the EELS-trace line in Fig. 4.9 compare the redox state of the precursor and 

newly precipitated ceria clouds. The high angle STEM analysis along the EELS line profile 

used a small probe size (0.2 nm) to minimize any fixed tissue sample damage that could 

occur under the prolonged electron beam exposure. The oxidation states of Ce were 

determined by the fine structures of M4,5 edges in EELS as described elsewhere in details 

[77]. The schematic in Fig. 4.10 gives some insights on how to compute the EELS edges for 

Ce and, in particular, the energy loss for Ce M4 versus Ce M5. The greater the contribution 

of Ce M5, the higher is the ceria reduction potential [77]. Interestingly, the same kind of Ce-

cloud formation was also shown previously for a high-dose of CeO2-MNPs after intravenous 

uptake and sequestration of CeO2-MNPs in liver and was associated with a much improved 

ROS potential [27]. Different valance states of the ultra-small CeO2-MNPs needles are 

characterized by core loss EELS to have very high Ce+3 signatures (corresponding to 

oxygen vacancies) as evidenced by the greater Ce M5 contributions obtained via the EELS 

analyses and are similar to those in the Ce-clouds (Fig. 4.9). Both HRTEM and Dark Field 
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STEM demonstrate that Ce-phosphates formed in the spleen and this typically occurs in 

lysosomal regions where ultra-small ceria particles transform/reform (the mechanism of 

transformation/reformation is not known at this time) (Figs. 4.11 and 4.12).

Elemental maps can be produced from EDS and EELS spectrum images (in high resolution 

STEM mode) and in the example below span across the regions where the Ce-nanoparticles 

accumulate. This information can then be used to build a thorough understanding of the 

temporal, structural and cellular relationships involving tissue composition and location of 

nanoparticles. An example is shown in Fig. 4.13 where elemental maps were generated over 

a select region that is illustrated using dark field STEM in 4.12. These are fairly low EELS 

pixel count maps in order not to destroy the tissue structures during the prolonged electron 

beam scanning. Therefore, a low angle dark field STEM condition has to be selected to bring 

out the cellular structures in the spleen (Fig. 4.13) while simultaneously analyzing the 

relative elemental composition and spectral signatures of for example Ce, P, C, Ca, N and O 

in the same region using STEM spectrum imaging (Fig. 4.13).

Elemental maps obtained from the EDS and EELS spectrum images allow for a comparison 

of the elemental distribution that is associated with the cellular structures and that of the 

accumulated nanoparticles. The low pixel count maps take about 30 min to acquire. Higher 

pixel count maps can be obtained but the required time increases rapidly and this can affect 

the beam/sample interaction and lead to artifacts. Elemental imaging may also be 

accomplished using an EELS imaging filter. Typically an in-column filter is more successful 

on biological specimens due to the smaller beam dose required. When using post column 

filters the sample stability may be impacted due to the high brightness required (electron 

intensity). The elemental imaging for Ce-MNPs that seem to preferentially locate around 

globular lipid-based components (Figs. 4.12 and 4.13) clearly shows that the Ca and N are 

highly enriched as part of the internal composition of the lipid structures and they have an 

outer shell or corona that is phosphor rich (P signal is high at the outside of the globular 

structures in Fig. 4.13). The Ce signal completely overlaps with the P signal suggesting, at 

the least, a spatial relationship. In case of the preferential Ce deposition at the outside of the 

lipid structures it would suggest that there is either a mechanism that controls the delivery of 

the Ce-MNPs to that particular P-rich location or, that Ce ions migrated to that region and 

formed new Ce-oxides, Ce-hydroxides or Ce-phosphates. The O-signal clearly shadows the 

areas of both, Ce and P signals (Fig. 4.13). The elemental map of the S-signal shows that it 

is confined to the lipid structures only. At this time it is not known how certain regions in 

cells govern nanoparticle delivery and accumulation, but there seems to be an underlying 

chemical control that needs to be considered. Much work will be required to understand the 

relationship between tissue components and nanoparticles, but the use of HRTEM/STEM 

and EELS is certainly a tool that will be very useful towards that goal. How the MNPs’ port-

of-entry, dose, exposure duration and post-exposure time factor into the transport 

phenomena, particle transformation and in vivo processing mechanisms is not known at this 

time.
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4.3.4 Example III: Ferritin Nanoparticles Inside Lung and Liver Tissue

The uptake and sequestration of MNPs, both silica (amorphous SiO2) and ceria (CeO2) 

results in the partial breakdown and in vivo processing of the original MNP-particles as 

discussed in Examples I and II in earlier sections in this Chapter. Remarkably, there is 

additional evidence one can gain from HRTEM: the presence of different MNPs (SiO2, 

CeO2) in different organs (lung, liver, spleen) after being delivered via different uptake 

routes (inhalation, intravenous), have at least one response in common, specifically, the 

simultaneous formation of ferritin nanoparticles in the vicinity of the invader MNPs. 

Ferritins represent bio-mineralized iron nanoparticles that are typically 5–8 nm in size and 

trapped inside the cage of the iron storage protein [8]. They occur immediately juxtaposed to 

the cell-invading and inflammation-inducing MNPs [27]. Moreover, the ferritin 

nanoparticles are highly concentrated next to the MNPs when compared to tissue regions 

that are not affected by inflammation, as shown in the Dark Field STEM images in Figs. 

4.14 and 4.15. The individual solitary bright white spots surrounding the invader MNPs 

(inside the lysosomal regions) each represent one ferritin nanoparticle of 5–8 nm size (Figs. 

4.14 and 4.15). It is well established that ferritin nanoparticles form during the bio-

mineralization of ferrous (reduced) iron. A conserved iron-binding site, the ferroxidase 

center of the ferritin protein regulates iron storage in iron metabolism [38]. It is generally 

assumed that ferrous iron Fe(II) binds the ferroxidase center and the oxidized iron Fe(III) 

spontaneously enters the ferritin cage. High resolution imaging as well as spectroscopic and 

kinetic studies of ferritins (family of 24 iron storage proteins), suggest many common 

characteristics, including highly symmetric subunits of a cavity-engulfing protein coating in 

which the iron bio-mineralization takes place. Furthermore, there are four channel passages 

through the protein shell that help facilitate ingress and egress of ions which results in an 

iron core with eight subunits rather than a single dense sphere [75]. There are catalytic sites 

at the inner shell “ferroxidase center” which control the oxidation of Fe(II). The mechanisms 

of biomineralization of iron that result in ferritin nanoparticles like the ones shown in Figs. 

4.14 and 4.15 are described elsewhere [8, 38], but the association (close locality) with 

invader MNPs is novel and requires a thorough investigation of the subcellular mechanisms 

and participation of iron as a redox mediator to counter the effects of invader MNPs. The 

significance of iron in biological systems is due to its ability to engage in redox reactions, 

including the scavenging of free radicals [27]. In general, iron forms a labile iron pool that 

includes iron atoms, but free Fe(II) must be managed either by use in hemoglobin or inside 

of the iron storage protein, ferritin. Otherwise, reduced Fe(II) iron can participate in the 

Fenton reaction and cause free radical formation [44]. There are numerous transferrin 

receptors, all of which are proteins that participate in iron transport at the cellular and 

subcellular levels. Once Fe(II) is sequestered in the ferric form within the ferritin protein 

shell, this particular iron will not participate in free radical formation. In fact, the oxidation 

of one Fe(II) to Fe(III) releases an electron that can neutralize a free radical species and, 

thereby, act as an anti-oxidant. Each ferritin cavity can hold up to 4500 oxidized iron atoms 

[63] and each one had to release an electron while being oxidize. It is this catalytic process 

that provides ferritin with the anti-oxidant property. The physical characterization of the 

ferritin particles includes details of the protein shell as well as characterization of the 

mineralized iron oxide core. In the high resolution dark field images of the lung and spleen 

thin sections only the iron oxide core is visible due to the comparatively high atomic number 
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and close packing of the iron atoms, while the surrounding ferritin-protein shell has about 

the same density and general chemical make up as the cellular matrix and, therefore, is 

difficult to distinguish (Figs. 4.14 and 4.15). The dense iron core allows z-contrast imaging 

using HAADF-STEM (Figs. 4.14 and 4.15). When using aberration corrected STEM this 

technique provides insights into the detailed morphologies and structures of the iron core 

[70]. Although the exact composition and stoichiometry of the core is not well understood 

yet, most literature today suggests that the core is composed of a ferrihydrite (iron-

oxyhydrite) and also approximates this structure in human liver [63].

The copious ferritin nanoparticles that form halos around sequestered MNPs (Figs. 4.14 and 

4.15) occur in such a high concentration that it, unmistakably, seems to be a direct response 

to the presence (invasion) of the MNPs in either the lung or spleen (Figs. 4.14 and 4.15). 

Ferritin nanoparticles are typically present throughout cells, but not in the particularly high 

concentration that is shown inside the ferritin-halos around MNPs (Figs. 4.14 and 4.15). 

Unexpectedly, the elevated ferritin nanoparticle accumulation seems independent of the 

nature of the MNPs (amorphous SiO2, CeO2 and others not shown in this Chapter). The 

mechanisms that control the abundant in vivo formation of ferritin nanoparticles next to the 

invader MNPs need to be further investigated, but it seems to indicate that the cellular and 

subcellular response mechanism(s) trigger an upregulation of iron immediately juxtaposed 

to the MNPs. This is very important since MNPs are linked to inflammatory processes and 

possible cell toxicity, which results in formation of free radicals [44]. Either the MNPs or the 

free radicals, or both, initiate mechanisms that trigger the upregulation of iron in the same 

regions. Consequently, ferritin nanoparticles that form as a result of the oxidation of Fe(II) to 

Fe(III) can participate in free radical scavenging processes as mentioned earlier and provide 

the needed anti-oxidant response to counteract invader MNPs. This can explain the ferritin-

rich halos that are observed in the HAADF-STEM images around the MNPs (Figs. 4.14 and 

4.15). At this time there is no available data on a nanoparticle induced dose-dependent 

ferritin response, but it seems logical that the higher the MNPs dose, the greater the ferritin 

nanoparticle concentrations would be in the affected tissue regions.

4.4 Synchrotron Analysis: Dose-Dependent Nanoparticle Signatures in 

Tissue

X-ray absorption spectroscopy methods making use of synchrotron radiation, such as 

XANES and EXAFS, may prove useful in providing information on the electronic and local 

atomic structure of elements in nanotoxicology. A screening of selected tissue samples for 

elements of interest may provide information regarding the incorporation of such elements 

from exposure to nanoparticles as a function of a particular dose that led to a certain 

pathological response. An important analogy is when an X-ray absorption spectroscopy 

survey was conducted on coal samples to determine the chemical nature and structure of 

elemental impurities. In that case, the researchers were faced with a similar staggering 

problem. Coal contains nearly the entire periodic table as impurity elements, and many of 

the impurity elements were of concentrations 1000 ppm or less, which could not be 

confidently characterized by conventional microscopic, spectroscopic, or diffraction 

techniques [82]. Using predominantly fluorescence mode, significant and important 
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information was obtained on numerous trace elemental impurities in coal using X-ray 

absorption spectroscopy [37]. Just below the edge energy and prior to the single scattering 

region, pre-edge features provide useful information on site symmetry (e.g., a sharp feature 

is typically produced with tetragonal symmetry, while octahedral generally produces a faint 

signal), the white line region provides information on the oxidation state of the material, and 

the multi-scattering region provides information on the immediate environment of 

neighboring atoms. The higher energy region provides a wealth of information on the 

identity of neighboring atoms, their interatomic distances, and their degree of coordination. 

Although XANES in principal can also be obtained in high resolution STEM mode using 

electron microscope applications, elemental dispersion over larger tissue areas is not 

possible using large magnification settings and needs to be done at a synchrotron source. 

Two examples related to catalyst particles (iron oxide and ceria nanoparticles) that are often 

examined with regards to their nano-toxic response are provided below. In the first case [68] 

the role of the element K in promoting the carburization rate of iron oxide in Fischer-

Tropsch synthesis catalysts was explored by XANES and EXAFS spectroscopy. The 

XANES spectra were recorded with the catalyst heated in flowing carbon monoxide (Fig. 

4.16a). Changes in the white line are evident (Fig. 4.16a), and in comparing the spectra to 

those of reference compounds, reduction was found to proceed by way of Fe2O3 to Fe3O4 to 

FeO to Fe carbides. Simultaneous EXAFS spectra were recorded (Fig. 4.16b). The low 

distance- peak of Fe-O coordination and the high distance peak of Fe-Fe coordination in 

Fe2O3 change to match the distances of Fe-O and Fe-Fe coordination in Fe3O4. At the end 

of the trajectory, Fe-C bonds in Fe carbides are clearly observed in the intermediary range of 

distance. Thus, the two techniques (XANES and EXAFS) provided similar information on 

the chemical changes occurring, but simultaneously and from two different perspectives. 

Bio- mineralized iron oxides are very often present at the cellular and subcellular levels and 

it is important to distinguish oxidation states and also to observe whether iron may be 

coordinated to carbon, sulfur or phosphor and if variations occur as a function of dose 

(nanoparticle exposure).

A second example [45], on the doping of nanosized ceria (CeO2) domains with platinum 

doping of 0.5 % (by weight) and 50 % (by mole) calcia, is described below. The XANES 

patterns of Ce4+ and Ce3+ are very different (Fig. 4.17a).

where Ce4+ contains two very broad peaks, as well as additional features, while Ce3+ 

exhibits a sharp distinct peak, B0. This is based on changes in the electronic structure of 

ceria, and its effect on the allowed electronic transitions. When the same CeO2 nanoparticle 

catalyst was heated in hydrogen (Fig. 4.17b) to activate the surface by reduction, the 

addition of the dopants (Pt and Ca) facilitated surface shell reduction to ~200°C (from 450 

to 500°C for undoped ceria), and bulk reduction commenced at ~400°C (rather than >700°C 

for undoped ceria). This clearly demonstrates the sensitivity of the analysis tool towards 

elemental, structural and thermal changes as a function of reduction potential. Thus, using 

high intensity X-rays generated at the synchrotron can provide a wealth of information 

regarding the identity, chemical state, and local atomic structure of nanoparticles, and may 

provide key information in any survey of tissue samples for nanotoxicology.
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4.5 Synopsis

In this chapter the inter-relationship between dose, nanoparticle uptake, cellular and 

subcellular interactions and nanotoxicity has been discussed with examples of means of 

observation of in vivo bio-processing and response. Emphasis is placed on the importance of 

the precision of characterization of the starting particles, the particles in a biological 

environment, and the physiological response. The relationship between dose, bio-processing, 

and response is an area of active research as all three may be related in a non-linear manner. 

It is pointed out that relatively insoluble materials like CeO2 have been observed in vivo to 

undergo significant changes in shape, size, material phase and electronic structure. Because 

of this, the modelling and prediction of dose versus toxicity over time becomes a non-linear 

problem because the initial particles can transform over time and initiate different responses 

that evolve as the dynamic system undergoes further transformations. The examples in this 

chapter illustrate two advanced materials characterization methods that are useful in the 

characterization of nanoparticles, before and after introduction in the biological 

environment, and in observing specific types of physiological response. These methods are 

advanced analytical electron microscopy (STEM/EELS) and x-ray absorption near edge 

spectroscopy (XANES). In conclusion the dose response relationship is complicated by the 

physicochemical transformations in the nanoparticles induced by the biological system 

producing an altered response. Thus, the modelling and prediction of dose-response-toxicity 

relationships has to take into account non-linear dependencies when attempting to predict a 

dose versus toxicity response relationship. This has to be especially considered when 

predictive modelling of nanomaterials utilizes in vitro models. Therefore, the long-term goal 

is to develop cellular in vitro models that can support dynamic processing of nanoparticles 

for exposure risk assessment.
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Fig. 4.1. 
Schematic illustration of nanoparticle dose-dependent reactivity and physiological response
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Fig. 4.2. 
From dose to response: MNPs characterization, followed by dose-dependent exposure in 

rodent model, uptake into organs/tissues, in vivo processing and nanotoxicity assessment 

and modelling
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Fig. 4.3. 
Nanoparticle breakdown can lead to improved biocompatibility
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Fig. 4.4. 
illustrates precursor SiO2-MNPs prior to dose controlled inhalation into lungs. (a) Large 

agglomerates. (b) Precursor SiO2-MNPs with amorphous nanostructures and predominantly 

spherical shape. Some overlapping spheres are marked with circles
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Fig. 4.5. 
Dark field STEM imaging of lung section after repeated dose inhalation and 27 days post 

treatment. SiO2-MNPs show pores and significant in vivo processing. Almost all of the 

original spherical morphology has disappeared after 27 days post treatment exposure. SiO2-

MNPs show dissolution patterns, void/pore formation (yellow arrows) and significant 

outward growth of reaction zones (secondary growth shown by blue arrow)
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Fig. 4.6. 
Elemental EDS maps of O, Si, S, and P taken from a region in Fig. 4.4
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Fig. 4.7. 
Dark Field STEM imaging and EDS spot analyses show the bioprocessing of SiO2-MNPs in 

alveolar macrophages. Migration of Si occurred outwards and led to a secondary reaction 

zone “Si-cloud” between SiO2-MNPs and yellow line. The small very bright spots in the Si-

cloud region are ferritin nanoparticles
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Fig. 4.8. 
(a) Dark Field STEM image shows in vivo breakdown of SiO2-MNPs in alveolar 

macrophage (Zone I) and formation of Zone II. (b) Magnified region shows small 

nanoparticles in Zone II
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Fig. 4.9. 
STEM and EELS analyses of CeO2-MNPs in spleen after a therapeutic dose and 14 days 

residence time. Analysis of the ceria M5/M4 ratio along the line profile from an EELS 

spectrum image
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Fig. 4.10. 
Schematic illustration of energy loss for computing EELS edges for Ce
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Fig. 4.11. 
TEM and HRTEM images with increasing magnification show the presence of CeO2-MNPs 

and Ce-phosphate after in vivo processing and leads to a local arrangement. Many MNPs are 

self- aligning to form needle- shaped structures indicted with red arrows
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Fig. 4.12. 
CeO2-MNPs are imaged using low angle dark field STEM condition showing cellular 

structures in the spleen. The CeO2-MNPs localize around cellular inclusions
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Fig. 4.13. 
STEM spectrum imaging and elemental maps of Ce-MNPs localized around spleen 

inclusions
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Fig. 4.14. 
SiO2-MNPs in TEM and dark field STEM showing cellular structure of the alveolar 

macrophage, location. The SiO2-MNPs are surrounded by ferritin nanoparticle halos 

identified using EELS spot analysis
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Fig. 4.15. 
CeO2-MNPs in dark field STEM showing cellular structure in the spleen macrophage. The 

CeO2-MNPs localize around cellular inclusions and are surrounded by ferritin nanoparticles 

identified using EELS spot analysis
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Fig. 4.16. 
(a) XANES spectra for iron oxide; (b) EXAFS recorded during heating
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Fig. 4.17. 
(a) XANES for Ce+3 and Ce+4 and (b) XANES as a function of heating
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