26 research outputs found

    Foreland dynamics as a measure of mountain building processes

    Get PDF
    Forelands record the uplift and exhumation history of mountain belts. The alpine foreland basin is particularly exciting, as is shows late-orogenic exhumation, possibly as a reaction to mantle-driven, plate convergence, or climatic forcings. However, inferring the contribution of the individual drivers to exhumation from stratigraphic or thermochronological data is challenging. The reason for this are along strike variability basin of stratigraphy, different degree of exhumation, as well as structural style of the Subalpine Molasse (i.e., the fold-thrust belt at the southern fringe of the basin). Furthermore, the influence of fluid flow on the thermochronological ages is unknown. Exhumation estimates in the central part of the basin are mostly based on stratigraphic arguments. Thermochronological data is scarce and limited to local studies. As the Molasse has also been uplifted in the central part of the basin since the Miocene, it is probable that it also responds to deep-seated processes, but to a lesser extent than the western part of the basin. This may be a result of different slab dynamics along strike the orogen. To test this, we used detrital and in situ low-temperature thermochronological age dating to shed light on the surface expression of the underlying geodynamic process (Figure 1). Data shows that most ages in the central part of the basin are unreset, while resetting occurs in the southernmost tectonic slices of the Subalpine Molasse. Generally, Miocene shortening in the Subalpine Molasse progressively decreases from west to east. The pattern coincides with slab geometries at depth (Mock et al., 2020). A general trend of lesser erosion from west to east is also visible in the flat lying Molasse based on vitrinite reflectance data. This suggests that a geodynamic driver is required for explaining basin exhumation on basin scale. Locally, the pattern is more complex. Particularly in the Subalpine Molasse, exhumation may be associated with plate convergence. To test the influence of faulting on exhumation, we constrained the geometries of the fold-thrust belt. Using a new compilation of stratigraphy and structures along the entire Alpine deformation front (Ortner et al., 2023), we identified two key regions: the Bregenzerach south of the eastward termination of the Jura Mountains, and the Hausham Syncline southeast of Munich. The Bregenzerach region lies at the surface boundary between Eastern and Western Alps. Furthermore, previously published thermochronological data indicate thrust activity in the mid-Miocene. Structures at depth are reasonably well-constrained due to good outcrop conditions and seismic data. The Hausham Syncline represents the region where structures at depth are less well constrained, and additionally the frontal triangle zone of the Subalpine Molasse tapers out. Structural modeling shows that it is possible to quantify the uncertainty of structures at depth, paving towards thermo-kinematic modeling including structural uncertainty (Brisson et al., 2023; Frings et al., 2023). The extensive thermochronological dataset offers the opportunity to identify local particularities not in line with the general trends observed in the data. Using thermal springs as proxy for heat flow (Luijendijk et al., 2020), we show that fluid flow may at least locally influence the cooling pattern. This is important for translating cooling into exhumation, particularly in regions where less data is available and thus outliers may be overlooked

    Groundwater resources in the Jabal Al Hass region, northwest Syria: an assessment of past use and future potential

    Get PDF
    In many cases, the development of groundwater resources to boost agricultural production in dry areas has led to a continuous decline in groundwater levels; this has called into question the sustainability of such exploitation. In developing countries, limited budgets and scarce hydrological data often do not allow groundwater resources to be assessed through groundwater modeling. A case study is presented of a low-cost water-balance approach to groundwater resource assessments in a 1,550 k

    Geospatial data and model results for a global model study of coastal groundwater discharge

    No full text
    This dataset contains 1) results of a series of model runs that explore the sensitivity coastal groundwater discharge to hydrogeological parameters, 2) results of a large series of numerical models of coastal groundwater discharge that cover parameter space for topographic gradients, recharge and permeability of coastal groundwater systems and 3) the results of a global geospatial data analysis of relief, watershed geometry, recharge and permeability of coastal watersheds, and values for coastal groundwater discharge that are based on a combination of the model experiments and the geospatial data analysis. A description of the methods that were used to generate these datasets can be found in a preprint on eartharxiv, see linked publication below

    Episodic fluid flow in an active fault

    No full text
    We present a 250 ky record of episodic fluid flow along the Malpais fault which hosts the Beowawe hydrothermal system, Nevada, USA. Samples show partial resetting of the apatite (U-Th)/He thermochronometer in a 40 m wide zone around the Malpais fault. Numerical models indicate that, using current fluid temperatures and discharge rates, fluid flow events lasting 2000 years or more would lead to fully reset samples. Episodic fluid pulses lasting 1000 years resulted in partially reset samples, with ~36 individual fluid pulses required to match the data. Episodic fluid flow is also supported by an overturned geothermal gradient in a borehole that crosses the fault, and by breaks in stable isotope trends in hydrothermal sinter deposits that coincide with two independently dated earthquakes in the last 20 ky. This suggests a system where fluid flow is triggered by repeated seismic activity and seals itself over ~1000 years due to formation of clay minerals and silicates in the fault damage zone. Hydrothermal activity is younger than the 6-10 Ma age of the fault. This suggests that the onset of deep (~5 km) fluid flow was initiated only after a large part of the total of 230 m offset took place

    A numerical sensitivity study of how permeability, porosity, geological structure, and hydraulic gradient control the lifetime of a geothermal reservoir

    Get PDF
    Geothermal energy is an important and sustainable resource that has more potential than is currently utilized. Whether or not a deep geothermal resource can be exploited, mostly depends on, besides temperature, the utilizable reservoir volume over time, which in turn largely depends on petrophysical parameters. We show, using over 1000 (n=1027) 4-D finite-element models of a simple geothermal doublet, that the lifetime of a reservoir is a complex function of its geological parameters, their heterogeneity, and the background hydraulic gradient (BHG). In our models, we test the effects of porosity, permeability, and BHG in an isotropic medium. Furthermore, we simulate the effect of permeability contrast and anisotropy induced by layering, fractures, and a fault. We quantify the lifetime of the reservoir by measuring the time to thermal breakthrough, i.e. how many years pass before the temperature of the produced fluid falls below the 100 ∘C threshold. The results of our sensitivity study attest to the positive effect of high porosity; however, high permeability and BHG can combine to outperform the former. Particular configurations of all the parameters can cause either early thermal breakthrough or extreme longevity of the reservoir. For example, the presence of high-permeability fractures, e.g. in a fault damage zone, can provide initially high yields, but it channels fluid flow and therefore dramatically restricts the exploitable reservoir volume. We demonstrate that the magnitude and orientation of the BHG, provided permeability is sufficiently high, are the prime parameters that affect the lifetime of a reservoir. Our numerical experiments show also that BHGs (low and high) can be outperformed by comparatively small variations in permeability contrast (103) and fracture-induced permeability anisotropy (101) that thus strongly affect the performance of geothermal reservoirs

    Compilation of discharge, temperature, hydrochemistry and isotope data for thermal springs in the Alps

    No full text
    This dataset contains a compilation of location, discharge, temperature, hydrochemistry and isotope data for springs, tunnels, galleries and wells in the Alps and surrounding areas. In addition, the dataset contains a separate spreadsheet that only includes natural thermal springs and shallow (<100 m) wells in the Alps, and that adds data on the calculated circulation temperature, depth and heat flux. This dataset was used to quantify the contribution of thermal springs and deep groundwater flow to the groundwater and heat budget of the Alps. More details on the methods used to calculate circulation depth, temperature and heat flux can be found in this publication
    corecore